Tag Archive: science

Jun 22 2012

Book Review: Huygens–The Man Behind the Principle by C.D. Andriesse

huygens-man-behind-principle-c-d-andriesseThis post is a review of C.D. Andriesse’s biography “Huygens: The Man Behind the Principle”. Huygens Principle concerns the propagation of light but he carried out a wide range of research, including work on clocks, Saturn (discovering its moon “Titan” and hypothesizing the existence of its rings), buoyancy, circular motion, collisions, musical scales and pendulums. Huygens has made passing appearances in my blog posts on the French Académie des Sciences, on telescopes and also on clocks.

On the face of it is surprising that he is not better known, looking around for biographies of him one finds a rather short list. Andriesse puts this down to much of the personal documentation being in Dutch. The scientist in me feels there should be some quantitative way of measuring how “well known” a historical figure is now, and how “important” they were – I suspect this is an impossible programme. On completing the book I suspect a couple of factors play a part here: Huygens represents something of a transitional figure between the work of Galileo/Descartes, and Newton/Leibniz. Similarly his practical work on clocks and telescopes was impressive for its time but superseded not long thereafter. What we do now in physics owes much more to Newton than to Galileo, furthermore Newton although not prolific published more promptly than Huygens and was President of the Royal Society for 20 or so years before his death in post, whilst Huygens left L’Académie des Sciences sometime before his death in not particularly auspicious circumstances. It isn’t entirely clear whilst reading the book, but it becomes obvious that frequently Huygens’ work was done over long periods and only published quite a long time after it was started, often posthumously.

Huygens was born in the Hague in 1629 and died 1695. Christiaan Huygens’ father, Constantijn was a senior Dutch diplomat and a regular correspondent with René Descartes. Constantijn also met Francis Bacon (and was clearly impressed by him), Bacon and Descartes were important in shaping the development of science in the early 17th century. Bacon in particular set the scene for the way of doing science both in the Royal Society and  L’Académie des Sciences. Constantijn set his son off on a regime of study in the classics, with a view to him becoming a lawyer and following in his footsteps as a diplomat. Sometime around 1643, when Christiaan was 14 years old he started to show promise in mathematics.

Huygens senior provided introductions to Marin Mersenne who introduced him to those circles who became the Académie des Sciences in France. Christiaan Huygens was a paid director of science at L’Académie from its foundation in 1666 until he was excluded from it shortly after the death of Jean-Baptiste Colbert, founder of the organisation and his principle patron, in 1683. The exclusion arose from a combination of the loss of this patron, religious differences, absence due to illness, personal vendettas, opposition to membership of any foreigner and his demand for higher remuneration. Aside from this period at L’Académie, Huygens appears to have lived on the wealth and position of his father.

There’s no doubt that he made significant contributions in the area of mechanics, going beyond what Galileo and Descartes had done but his work was superseded almost immediately by that of Newton, and Leibniz, particularly in the methods of calculus which they developed. Calculus is a tool which makes much of the complex geometrical work that Huygens did obsolete. Leibniz was an informal pupil of Huygens, and they kept up a lengthy correspondence. He also had some exposure to Isaac Newton via the Royal Society.

Andriesse claims that Huygens wrote the first physics formula, relating to collisions. I think we should probably take this with a pinch of salt, but looking at the work he did do on circular motion, collisions, buoyancy, the motion of the pendulum and the shape of a catenary as well as his work on optics it is all very familiar to those that studied physics (at least to the age of 18).

Alongside his mathematical and theoretical physics work, Huygens also made contributions to the development of both clocks and telescopes. He introduced the pendulum clock, and a design of his was tested for determining the longitude by the Dutch East India Company. In practical terms this was not successful but it was a valiant first try. He also made lenses and constructed his own telescopes, here he appears to have been a competent technician and an able theoretician but not reaching the level of Newton, who constructed his own reflecting telescope – the first practical example of its type which was not exceeded for some 30 years or so.

This is a detailed biography of Huygens, drawing heavily on his personal correspondence and covering his scientific achievements in some depth, in the manner of Abraham Pais biography of Einstein. Although the book is pretty readable, the style is odd in places – Huygens is referred to frequently as “”Titan” without any real explanation as to why – it may be that in the original Dutch version, entitled “Titan kan niet slapen” (“Titan can not sleep”) this is a bit more obvious. The author also throws in the odd “Iris” when referring obliquely to sex (at least I think that’s what he’s doing!). Occasionally bits of information are scattered through the text, so we learn when Huygens is born and only 10 pages later do we learn where. There is no strong distinction of when Huygens started working on a publication and when it was actually published.

Perhaps more seriously Andriesse makes an attempt at Freudian analysis of some of Huygens illness, I’m no expert in this but I suspect this approach would be considered out-dated these days. It is also here that the translation perhaps wobbles a bit, with Huygens described as having “symptoms of the hypochondriac” which I think may be a mistranslation of melancholia hypochondriaca which I believe refers more generally to mental illness than the specific modern “hypochondria”.

This said, Andriesse’s biography of Huygens is well worth reading. Christiaan Huygens himself is an interesting subject who made important scientific discoveries across a range of areas.


My Evernotes for the book are here.

May 27 2012

Book Review: The History of Clocks & Watches by Eric Bruton

The-History-of-Clocks-Watches-by-Eric-BrutonEarlier, it was telescopes, now I’m on to clocks! Here I review Eric Bruton’s book “The History of Clocks & Watches”. I came to it via an edition of the Radio 4 programme “In Our Time” on the measurement of time (here). The book was originally published in 1979, the edition I read was from 2002. I mention this because there is some evidence that the text has not been fully updated.

1 Earliest clocks

The book starts with a slightly cursory look at the use of the sun to measure time, and mentions briefly the use of candles. The first mechanical clocks were based on water, and in Europe were used as timekeepers in monastic communities. No direct physical evidence appears to remain for these clocks, although there are detailed descriptions in books from the time such as Su Sung’s 1092 “New Design for a (Mechanised) Armillary (sphere) and (celestial) globe”. They appear to have been used widely in ancient times. The sandglass, superior to the water clock because of the flow properties of sand when compared to water, first appears in illustrations in 1337.

2 Advent of clockwork

“Clockwork” clocks started to appear started to towards the end of the 13th century, they were found in monasteries to call the monks to prayer. The key components of a clock are a mechanical oscillator, initially a bar with weights at the end know as a foliot, an “escapement” to allow motion coupled to the mechanical oscillator to work a display and a driving force to keep the oscillator going. In these early clocks falling weights provided the driving force. The first escapements were known as “verge escapements” and were in use until 1800, several hundred years after they were introduced. In fact it took an awfully long time for mechanical clockwork to replace solar clocks. Improvements to timepieces are in the quality of the mechanical oscillator: making it insensitive to pressure and temperature, and making sure the driving force and display train interferes minimally with the going of the oscillator.

3 Domestic Clocks

The first spring driven clocks appeared around 1430, the spring enables a rather more compact clock but the problem is the power it generates varies with how far it is unwound, this problem was addressed using a fusee which moderates the output power, apparently adapted from siege engines where it is used in reverse to enable men to wind up catapult style devices. Another trick is to use the spring only in a small part of its unwinding.

4 European mechanical clocks

It was not until 1657 that Christiaan Huygens introduced the pendulum as the oscillator for clocks, which produces a big improvement in accuracy – it actually becomes relevant for a timepiece to have a minute hand. Huygens made repeated contributions to the development of the clock, although he had a clockmaker implement his ideas in much the same manner as Robert Hooke had Thomas Tompion implement his ideas.

5 The Time at sea

As early as 1598 Philip III of Spain had offered a reward for a method to find the longitude, it was a well-recognised problem well before the Board of Longitude was created in England to provide a prize for its solution. John Harrison and his marine chronometers for determining the longitude are covered in some detail, extending beyond his life to cover the developments of other clockmakers including John Arnold, Thomas Mudge, Thomas Earnshaw and Pierre Le Roy. Harrison is famous for his dispute with Nevil Maskelyne, the Astronomer Royal, and something of an embodiment of the Board of Longitude that funded his work but it seems that clockmakers of the time were disputatious with each other and the Board.

The fields of astronomy and timekeeping are tied together, many early clocks went to great lengths to show astronomical information such as the phases of the moon. Even in the 20th century the most precise mechanical clocks were made for astronomical use, in the past Thomas Tompion was renowned for his precision timepieces supplied to the Royal Observatory. Whilst Christiaan Huygens made revolutionary advances in both clock design and telescopes. There is a relationship between dividing a quadrant, a device for measuring angles in astronomy, accurately into increments and dividing the gear wheels of a clock accurately to position the teeth.

6 The development of the watch

Personal timepieces date from the late 15th century, in fact prior to this people carried personal sundials or even used themselves as the pointer in a simple sun clock. The challenge with a watch is to produce a compact timepiece, meaning small parts, which is robust to the forces that being carried around all the time exert. I have to say here that the watches that Abraham-Louis Breuguet made at the end of the 18th century are absolutely gorgeous (see here, for example).

7 Mass production

I found it surprising the degree of precision achieved in the pre-Industrial age in the manufacture of timepieces, but then I also found pre-Industrial lens grinding semi-miraculous. This probably says more about me then anything else but perhaps the message is that bespoke precision pre-dated the Industrial Revolution whose strength was in standardising components, introducing continuous workflows and making use of less skilled labour. At points in time specific areas of England, France, Germany, Switzerland and the US were predominant centres of manufacture with the US leading the way in mass production but the Swiss picking it up in Europe.

8 The Technological Age

The 19th century saw the arrival of trains and telegraph, these bring the need to standardise time and the means to do it. Scheduling of trains means that standardising time is to some degree a safety issue, the adoption of time zones in the US in 1876 was also driven by the railways. The adoption of Greenwich Mean Time occurred in 1880, the Greenwich Observatory had been providing a time single in the form of a dropping ball since 1833. The telegraph enabled such time signals to be distributed more broadly, and used automatically. Electricity was also incorporated in the running of the clock, the 1921 Synchronome electromechanical clock providing the ultimate in accuracy until the introduction of quartz and atomic timekeepers.

9 Watches for the people

The final part of the book covers the reduction of cost to mass produce watches which all could afford, this process includes simplifying the mechanisms and sacrificing accuracy where possible. It highlights the development of digital watches in the 1970s where the prevailing mechanism for testing the quality of electronic components was to sell them and see how many were returned!

For my own amusement I present the following table which presents the accuracy of various landmark timepieces in standardised form, the first two entries are from this wikipedia article whilst the remainder are from the book:

pre-1657 15 minutes per day 328500 seconds/year
1657 Christiaan Huygens 15 second per day 5475 seconds/year
1766 Pierre Le Roy 7.5 seconds over 46 days 60 seconds/year
1921 Synchronome Fractions of a second per year 0.5 second/year
1955 Atomic clock 1s in 3000 years 0.00033 seconds/year

Coincidently the improvement in accuracy for successive entries in this table is 100-fold.

The book is heavily illustrated with pictures of timepieces, diagrams of mechanisms and engravings of workshops. I rather like this, but in places it feels like you’ve seen an image before in relation to an earlier section of the book. Although the book is logically arranged, in fact I borrowed the logic to structure this post, the presentation of how clock mechanisms work is disjoint, and scattered throughout the book.

My follow on reading from this book is on Christiaan Huygens, he isn’t a central character here but he just turns up in so many different places!


  • My Evernotes on the book are here.
  • The Breguet at the Lourve exhibition looks interesting (here)

Apr 17 2012

Book Review: Stargazers by Fred Watson

41W3OswkqxL._SS500_This post is a review of “Stargazers:The Life and Times of the Telescope” by Fred Watson. It traces the history, and development of the telescope from a little before its invention in 1608 to the present day.

The book begins its historical path with Tycho Brahe, a Danish astronomer who lived 1546-1601. He built an observatory, Uraniborg, on the Danish island of Hven in view of his patron, King Frederick II of Denmark. Brahe’s contribution to astronomy were the data which were to lead to Johannes Kepler’s laws of planetary motion and ultimately Isaac Newton’s laws of gravitation. On the technical side his observatory represented the best astronomy of pre-telescope days with the use of viewing sights, his Great Armillary with it axis aligned with that of the earth and graduated scales to measure angles. Watson also cites him as a first instance of a research director running a research institute – alongside the observatory he ran a print works to disseminate his results.

The telescope was first recorded in September of 1608, when Hans Lipperhey presented one to Prince Maurice of Nassau in the Netherlands. Clearly it was a device of its time since in very short order several independent inventions appeared, Galileo constructed his own version which led to his publication of “The Starry Messenger” in 1610 which reports his observations using the device. The telescope grew out of the work of spectacle makers; there are some hints of the existence of telescope-like devices in the latter half of the 16th century but these are vague and unsubstantiated. Roger Bacon and Robert Grosseteste both conceived of a telescope-like device in the 13th century, around the time the first spectacles were appearing. Although there are a few lenses from antiquity there is no good evidence that they had been used in telescopes.

The stimulus for the creation of the first telescopes seems to have been a combination of high quality glass becoming available, and skilled lens grinders. The lens making requirements for telescopes are much more taxing than for spectacles. The technology required is not that advanced, if you look around the web you’ll find a community of amateur astronomers grinding their own lenses and mirrors now using fairly simple equipment, typically a turntable with a secondary wheel which produces linear motion for the polishing head back and forward across the turning lens blank. The most technologically advanced bit is probably captured in the first step: “acquire your glass blank”.

Through the 17th century refracting telescopes were built of ever greater length in an effort to defeat chromatic aberration which arises from the differential refraction of light as a function of wavelength (colour) – long focal length lenses suffered from less chromatic aberration than the shorter focal length ones which would allow a shorter telescope. Johannes Hevelius made telescopes of 46m focal length (physically the telescope would be a little shorter than this), mounted on a 27m mast; Christiaan Huygens dispensed with the “tube” of the telescope entirely and made “aerial telescopes” with even longer focal lengths, up to 64m.

It was known through the work of Alhazen in the 10-11th century, and others, that reflecting, curved-mirrors could be used in place of lenses. A telescope constructed with such mirrors would avoid the problem of chromatic aberration. However, the polishing tolerances for a reflecting telescope are four times higher than that of a lens. Newton built the first model reflecting telescope in 1668 but no-one was to repeat the feat until John Hadley in 1721.

Theoretical understanding of telescopes developed rapidly in the 17th century both for refracting and reflecting telescopes, indeed for reflecting telescopes there were no fundamental advices in the theory between 1672 and 1905. The problem was in successfully implementing theoretical proposals. Newton claimed that chromatic aberration could not be resolved in a refracting telescope, however he was proved wrong by Chester Hall Moor in 1729, and somewhat controversially by John Dollond in 1758 who was able to obtain a patent despite this earlier work (which was defended aggressively by his son) – the trick is to build compound lenses comprised of glass of different optical properties.

Also during the 18th century the construction of reflecting telescopes became more common, William Herschel started building his own reflecting telescopes in 1773 with the aid of Robert Smith’s “Compleat system of opticks”. Ultimately he was to build a 40ft (12m) telescope with a 48 inch (1.2m) mirror in 1789, supported by a grant from George III. During his lifetime Herschel was to discover the planet Uranus (nearly called George in honour of his patron), numerous comets and nebulae. At the time “official” astronomy was more interested in the precise measurement of the positions of stars for the purpose of navigation. Herschel was to be followed by Lord Rosse with his 1.8m diameter mirror telescope built in 1845 at Birr Castle, this has been recently restored (see here). He too was interested in nebula and discovered spiral galaxies.

During the 19th century there were substantial improvements in the telescope mounts, with engineers gaining either an amateur or professional interest (men such as James Nasmyth and Thomas Grubb). Towards the end of the century photography became important, which placed more exacting standards for telescope mounts because to gain maximum benefit from photography it was necessary to accurately track stars as they moved across the sky to enable long exposure times. This is also the century in which stellar spectrography became possible with William Huggins publishing the spectra of 50 stars in 1864. Léon Foucault invented the metal coated glass mirror in 1857 which were lighter and more reflective than the metal mirrors used to that point. As the century ended the largest feasible refracting telescopes with lens diameters of 1m were just around the corner, above this size a lens distorts under its own weight reducing the image quality.

In 1930 Bernhard Schmidt designed a reflecting telescope which avoided the problem of aberrations away from the centre of the field of view making large field of view “survey” telescopes practicable. As a youth in the 1970s I learnt of the 200-inch (5 metre) Hale telescope at Mount Palomar, since then space telescopes able to see in the infra-red and ultra-violet as well as the visible have escaped the distortion the atmosphere brings; adaptive optics are used to counteract atmospheric distortion for earthbound telescopes and there are “distributed” interferometric telescopes which combine signals from several telescopes to create a virtual one of unfeasible size.

Watson mentions briefly radio telescopes and in the final chapters speculates on developments for the future and gravitational lensing – natures own telescopes built from galaxies and spread over light years.

I enjoyed “Stargazers” as a readable account of the history of the telescope which left me with a clear understanding of its principles of operation and the technological developments that enabled its use, it also provides a good jumping off point for further study.


My Evernotes for the book are here, featuring more detailed but slightly cryptic notes and links to related work.

Mar 18 2012

Book Review: Decoding the Heavens by Jo Marchant

DecodingtheHeavensDecoding the Heavens” by Jo Marchant is the story of the Antikythera Mechanism, a mechanical astronomical calculator dating from around 100BC which predicts the motions of heavenly bodies including the sun, moon and various planets. The best way to understand how the device worked is through videos relating to this book (here) and, rather more slickly (here).

The Antikythera Mechanism was recovered off the coast of the island which provides its name in 1900. The wreck from which it was recovered was also carrying a large number of impressive bronze and marble statues, for example the Antikythera Ephebe. It is believed it was sailing from the Asia Minor coast to Rome, carrying the spoils of war. The wreck lies at a depth of 60 metres which is deep for the technology available at the time, the distinctive metal-helmeted diving suit. It was discovered by the crew of Captain Krontos, who were sponge-divers. As such they did a very risky job, Marchant reports that between 1886 and 1910 around 10,000 divers died from the bends and a further 20,000 were paralysed.

Once they had discovered the wreck they reported it to the Greek government who organised the salvage operation, at the time it was one of the first marine archaeological salvages – it was preceded  in 1884 by a speculative operation in the straits of Salamis which had recovered little. By the 1950s hundreds of wrecks were known in the Mediterranean. Marchant states that this is the first ever attempt to salvage artefacts from a sunken ship, I’m sceptical of this claim – it’s only true for very narrow definitions of each word – Edmond Halley, for example, had a company offering to salvage treasure from sunken ships in the 1690s.

It is curious how little regarded the Anthikythera Mechanism has been over the hundred or so years since its discovery. A measure of this is that the Athens National Museum, where it is kept, were still finding bits of it in 2005! This re-discovery is in some sense understandable, the Mechanism presents a rather unassuming appearance when compared to the statues with which it was found furthermore curating appears to have sharpened its act up over the years. A second reason is that it almost has the air of a fake about it, no other mechanism of comparable complexity was known until around 1000AD, and there was little written evidence for the existence of such devices.

The book works through the interpretation of the mechanism chronologically by researcher, starting with the initial interpretations made by John Svoronos and Pericles Rediadis (1903), Konstantin Rados (1905), Albert Rehm (1907) and John Theophanidis (1934). These are covered quite briefly. These initial studies were based on an exterior view of the fragments and small amounts of visible text, of which more became visible as cleaning attempts were made. It’s worth highlighting here that the mechanism was covered in text, both labels and operating instructions although originally little of this text was discernable. From these studies the mechanism was related to astronomical equipment such as the astrolabe, but was clearly different since it had a more complex clockwork-like mechanism. This chronological approach means that the reader gets a fragmented view of the device (with reverses in interpretation), as the story unfolds. There is also a degree of dramatisation of the story (e.g. “Shit,” said Roger Hadland) scattered through the book, I must admit to finding these rather grating but they are relatively sparse.

After the initial investigations there was a hiatus, with interest appearing to restart in the 1950s possibly spurred by a visit by Jacque Cousteau to the wreck in 1953. Derek De Solla Price was the next to attempt an analysis aided by x-ray imaging of the mechanism which was not available in earlier times. Price was Professor of the History of Science at Yale, in addition to his work on the Antikythera Mechanism he also did early work on scientometrics and the Japanese atomic bomb effort. He finally published his analysis in “Gears from the Greeks” in 1974, this included a detailed description of how the mechanism might have operated based on the gearing made visible by x-ray imaging.

The next attempt at a reconstruction was made by Michael Wright, originally curator of the engineering collection at the Science Museum in work starting in the early 1980s. He was joined by Allan G Bromley, a computer scientist and historian who was also involved in the reconstruction of the the Babbage. They quickly realised that Price’s theoretical reconstruction was in places somewhat creative. Wright ultimately produced a physical reconstruction of the mechanism over a period of 20 or so years.

Most recently, commencing in around 1998) there has been a collaboration led by Mike Edmunds at Cardiff University (The Antikythera Mechanism Research Project). They were able to bring to bear better x-ray tomography which was even able to reveal the details of inscriptions inside the accreted masses of the mechanism fragments, alongside Polynomial Texture Mapping, a photographic technique utilising multiple lighting angles and reconstruction to provide maximum information from surface markings. With collaborators at the Athens Nation Museum they also had access to an additional major fragment which had recently been discovered. Their work was published in the journal Nature (here in 2006 and here in 2008).

The comparison between the Wright and Edmunds collaborations is intriguing, in terms of scientific prestige the Edmunds collaboration have published on the mechanism in Nature the premier general science journal. They are a large collaboration with the best equipment, and fit well within the conventional scientific context. Wright, and to a lesser extent Bromley, were different. Wright in particular comes over has being very hard done by in the process, working in his spare time on the mechanism, always apparently “junior” to Bromley (the formal academic) and ultimately being pipped to glory by the Edmunds collaboration. His story comes through because Marchant has clearly interviewed many of the participants, rather than relying on the published literature. From the point of view of the published literature, all that is really visible to the scientific world, Wright’s efforts were virtually invisible until long after he had started work on the Mechanism.

The “problem” for the earliest interpreters of the mechanism is that it was so utterly different from anything else available from the period. There were no other clockwork like devices and few mentions of them, indeed the next instances were thought to be around 1000AD – it looks like the Antikythera Mechanism was dropped into the past from elsewhere. Nowadays it can be seen that this isn’t true. Archimedes and Ctesibius had been making complex mechanical devices in the 3rd century BC, although there are no physical remnants and the written records are sparse. On the other side, mechanisms of this type were in existence through to 1000AD and from then clocks appeared very rapidly suggesting a pre-existing store of knowledge.

In ancient Greece it is believed there were hundreds of thousands of bronze statues, the number left today are in the hundreds, at most. What chance even a few hundred rather unassuming objects to survive? As for the written record, what survives from the period has been repeatedly transcribed to suit the prevailing conditions, and they did not seek detailed descriptions of recondite mechanics. Can you lay your hands on the blue prints for an NMR machine?

The Antikythera Mechanism would have been made on the basis of the astronomical observations of the Babylonians who preceded its Greek makers. They had no “mechanical” model of the motions of the stars but they had a long, deep observational record of their movements. I’m interested in the night sky, and I can’t tell you but the details of the phases of the moon, even where it rises and sets let alone the motions of other planets are a mystery to me in the intuitive sense (I know I can look them up). The ancients had little to do at night, other than look at the sky – I feel I’ve lost something through having so many distractions and a night sky obscured by light pollution.


My Evernote on the book contains page by page comments, and also some links to related material

Jan 04 2012

Book Review: The First American by H.W. Brands

first_americanBenjamin Franklin (1706-1790) is someone who has crossed the paths of a number of protagonists in books I have read on the history of science, including Antoine  Lavoiser, Joseph Banks and the Lunar Society. I thought I should read something on the man himself: “The First American: The Life and Times of Benjamin Franklin” by H.W. Brands.

Franklin trained as a printer, as an apprentice to his brother. This was a route into learning since he got to read a lot, interacted with learned men and also started writing, when his brother launched a newspaper in their hometown of Boston – one of the early campaigns of this newspaper was against vaccination for smallpox. In the later years of his life he set up a printing press at his residence at the edge of Paris. Franklin ran away to Philadelphia before his apprenticeship finished, making his first trip to England to learn more of his trade with the (moral if not financial) support of the governor of Pennsylvania. This is another example, like Edmond Halley, of rather precocious responsibility which was not so unusual at the time. It turns out the publication of almanacs was lucrative, as was his printing work for the Pennsylvania Assembly. By the 1750s, only in his forties, he was able to step back from his business and carry on earning a good income from it. His trade as a printer seems to me important in honing his writing skills and getting his opinions out in the public domain.

I picked upon Benjamin Franklin primarily for his work as a “scientist”. The first substantial mentions of science in this book come around 1743, it is at this point he founds the American Philosophical Society and does work on a more efficient stove (which he refuses to patent), although in 1726 he is found making observations of a lunar eclipse on his return trip from England. This suggests a scientific turn of mind from a relatively young age. A few years later he is doing original and well-regarded work on electricity, as well as recommending the use of pointy lightning conductors (of great practical importance). He did some work relating a little to my own field: the spreading of oil and water as well as evaporative cooling, the Gulf Stream and some earlier thoughts on meteorology (this seems to strike a cord with some later proposals by Erasmus Darwin).

When Franklin was born Pennsylvania was in the hands of the Penn family, known as the proprietors – other states were controlled directly by the Crown via Royal governors. For much of his life Franklin considered himself to be British but by the end, the United States of America had become a newly minted nation with Franklin a pivotal figure in its creation. I suspect the causes of the War of Independence are the subject of many books. The battle cry of “no taxation without representation” has taken popular hold as a motivation, although at the time the British living in Britain were taxed with not very much representation, this taxation cause is certainly the theme that Brands follows. Also relevant was colonial support for the British in battles against the French, for which they felt little gratitude and that the British gave up in diplomacy much of that which they had paid for in blood. Ineptness on the part of the British political establishment and George III also plays a large part. Franklin’s part in the War of Independence is played politically in London in the run-up to the war, in France during the war – to garner their support, and finally in Philadelphia where he is heavily involved in the creation of the United States of America.

Throughout his life Franklin was a civic activist, a community politician, setting up the Junto (something of the character of the Lunar Society) and the American Philosophical Society (more like the Royal Society). He also founded fire brigades, a Library Company, an academy and a militia. In a sense the United States of America were the culmination of this civic activity.

For much of the last 25 or so years of his life, from 1757,  Franklin was resident in either London or Paris. In London as a representative of the Pennsylvania assembly to the British state, and in Paris similar when their help was sought in the war against the British. He appears to have fitted well into high society, and been exceptionally highly regarded in both countries. No doubt this is in part due to the formal position he held but prior to his arrival he was known in both cities via his interactions with learned societies (the Royal Society and the Académie des Sciences). He strongly considered staying the rest of his life in London, which is odd since his wife was unwilling to join him there.

In the same way that Poirier’s biography of Lavoisier introduced me to the French Revolution, this book on Franklin has introduced me to the American War of Independence. It’s like sneaking vegetables into a child by hiding them in something they like!


My Evernotes on this book can be found here.

Older posts «

» Newer posts