Tag: science

Book review: An Immense World by Ed Yong

My next review is of An Immense World by Ed Yong, subtitled How Animal Senses Reveal the Hidden Realms Around Us. I reviewed Yong’s previous book, I Contain Multitudes a while back. Somewhat foolishly I was slightly reluctant to pick this one up since I felt I was clued up on the “five senses”. I was incredibly wrong about this quick judgement. First of all, “five senses” are a human-centric view promulgated by the ancient Greeks, secondly it turns out we have been learning a lot about animal senses in my lifetime and show no signs of letting up.

The book is divided into 12 reasonably long chapters, treating smells and tastes, light, colour, pain, heat, contact and flow, surface vibrations, sound, echoes, electric fields, and magnetic fields. Finishing with a chapter on how senses work together and one on the pollution of the senses in the natural environment with artificial light and sound. We can see here the traces of the original five senses but some are split (light and colour, sound and echoes), taste and smell are merged; magnetic fields and electric fields are new introductions.

A key concept which is found throughout the book is the idea of “umwelt”, the perceptual world of an organism, which was coined by Jakob von Uexküll in 1909. Touching on the penultimate chapter first, this “umwelt” is almost impossible for us to fully appreciate – we can’t even be sure how the senses we share are experienced by other animals. Let alone how they work together with other senses that we don’t have.

One comfort of this book is that it turns out that human senses are not that bad. Yong cautions though that absolute comparisons across species are often wrong, and don’t account for large variations between individuals. His goal is to talk about diversity rather than ranking. A general theme is that although some animals might exceed us in terms of acuity, often it is the speed at which a response can be made that is the critical factor.

All of the chapters involve Yong talking to scientists, not just about the science but how and where it is done, which is engaging.

For smell the key ability that animals have over humans is better sampling so that scent traces can be followed, snakes do this with their forked tongues whilst dogs do so with subtly designed airways. I was also interested to learn that sea birds are sensitive to dimethyl sulphoxide which is an indicator for a bountiful ocean, and whose concentration likely serves as a large scale map. Taste is covered in just a couple of pages, essentially it is used by animals as a final go/no go decision on eating stuff – smell is a much more subtle sense.

It turns out human vision is pretty good compared to other animals, at least in certain aspects. Only eagles and other raptors have better acuity, certain flies have vision which is up to 10 times faster than ours. Many animals can sense light outside the human visual range, in the ultra-violet and infra-red and use this ability for specific purposes. I think the key takeaway for me was that the human visual system is not a blueprint for all visual systems, mantis shrimps, for example have a ridiculous number of different types visual receptors but they are used in a very different way to ours – almost like a set of special purpose triggers for motion, colour, light direction rather then general receptors whose signals are processed by the brain. It also seems that the colour vision is just not that important for survival – many people get by with impaired colour vision, and although colour vision like ours is not rare amongst certain groups it is in no way necessary for survival.

Yong makes a point about how our own senses guide our view of the mental world of other animals, we see cows as passive because they are not always looking around at their environment, as we do but they have virtually panoramic vision so they don’t need to constantly move their heads to see what is going on around them.

The chapter on pain starts with the naked mole-rat, whose tolerance of very high levels of carbon dioxide in their burrows is enabled by their limited ability to sense the pain induced by acidic substances (carbon dioxide forms carbonic acid). Much of pain research seems to be about belatedly realising that all manner of animals feel pain, and perhaps we shouldn’t inflict it.

Heat is generally detected by the TRP channel proteins, with different variants responsible for for different temperatures including “dangerously hot” and “dangerously cold” the temperature at which they are triggered varies from animal to animal. Melanophila (fire) beetles have incredibly sensitive heat sensing organs that can detect fires by their infra-red emissions from miles away. Similarly snakes are able to detect the direction heat is coming from, with signals processed alongside sight.

It turns out that touch is quite a varied sense, we think in terms of our fingers touching solid surfaces but for many animals the feel of flow in water is more important. The feeling of flow of water helps predators catch their prey, and fish to school together. Related is sensitivity to surface vibrations, which insects and other invertebrates have developed to an incredible degree. The songs of certain insects in surface vibrations are as sophisticated as bird song.

My favourite fact from the chapter on sound is that owls have one ear higher than the other so that they can locate sounds vertical by arrival time. I also learned that zebrafinches have very high sensitivity to the fine structure of their songs but are less sensitive to the notes they sing, it made me think a little of “tone” in guitar playing.

We should see echolocation as touching with sound, it wasn’t until the 1930s that it was appreciated that bats echolocated, and rather later for dolphins. Echolocation can be remarkably sensitive, dolphins can not only identify different materials from echolocations but they can match an object “seen” with echolocation to one “seen” with their eyes. Military interest in echolocation is essentially a result of a recognition that human technology lags biology.

Another novel sense, as far as humans are concerned, is electric. It has long been known that some fish used electricity as a weapon, but only in the 1950s was it recognised that it was also used for sensing. There are two types of electrosensing, one is active – like echolocation but it is omnidirectional and there is no wait for a signal return. The second is passive, some animals can detect the weak electric fields of animals going about their normal business. In common with echolocation the animals that use it have exquisite control over the frequencies, and sequences, of the probe pulses they generate.

Sensitivity to magnetic fields is the most elusive of senses, it has only been recognised relatively recently and we still don’t know for sure exactly how animals are sensitive to magnetic fields – there has been no conclusive identification of the receptor cells.

Astronomers have long been concerned with light pollution but it has only been more recently that biologists have realised it is a significant threat to animals. Similarly with sound, we are sensitive to noise pollution close up but don’t appreciate the significant noise pollution in pristine-looking environments.

I thoroughly enjoyed this book, as I did I Contain Multitudes. The style is engaging, and the subject matter is fascinating.

Book review: Superior by Angela Saini

superiorNext I turn to Superior: the return of race science by Angela Saini, having recently read Inferior by the same author. Inferior discusses how men of science have been obsessed with finding differences in all manner of human abilities on the basis of gender. Superior does the same for race.

In both cases largely male, white scientists spend inordinate amounts of time and effort trying to demonstrate the superiority of white males. There is a still pervasive view amongst scientists that what they do is objective and somehow beyond the reach of society. However, there is a a choice to be made in what is studied which goes beyond the bounds of science. Unlike Inferior, Superior reveals explicit funding and political support for racist ideas which stretch to the present day.

For Saini this is somewhat personal since she is of Indian origin, and considered a “Black member” by the NUJ. This highlights one of the core issues with race. The limited palette of races introduced in the 18th century ignored the huge variations across Africa and Indian to render the world down to White, Black, Indian, Chinese.

Furthermore the genetic variations within races, are bigger than those between races. Race was a construct invented long before we knew anything about genes, and it was a construct assembled for specific geopolitical purposes. The fundamental problem with race science is that it is literally skin deep, you might as well try to establish the superiority or otherwise of people having brown eyes, or red hair. The variations in genes amongst red-heads are as large as those between red-heads and blondes.

The account is historical, starting with the first “research” into race, when Britain, France and other countries where building empires by colonisation and the slave trade was burgeoning. It became important to rationalise the mistreatment of people from other countries, and race was the way to do it. White scientists neatly delineated races, and asserted that the white race was at the top of the pile, and thus had the right to take the land of other races, who were not using it correctly, and subjugate them as slaves.

Darwin’s work on evolution in the 19th century gave race science new impetus, white superiority could be explained in terms of survival of the fittest – a natural law. These ideas grew into the science of eugenics which had the idea of improving human stock through breeding. This wasn’t a science practiced in the margins, still renowned figures at the heart of statistics and biology were eugenicists.

Eugenics increased in importance prior to the Second World War but the behaviour of Hitler and the Nazis meant it fell out of favour thereafter. This is not to say race science disappeared. In 1961 a number of academics set up the journal Mankind Quarterly, funded by Wickliffe Draper’s Pioneer Fund. This had the appearance of a respectable academic journal but was in fact an echo chamber for what was essentially white supremacists. Similar echo chambers were set up by the tobacco and oil industries on for smoking and climate change. They look sufficiently like academic science to fool outsiders, and for politicians to cite them in times of need but the rest of their parent fields look on in horror. Mankind Quarterly is still published to this day, in fact within the last couple of years Toby Young was forced to resign as director of the Office for Students having attended meetings at University College London organised by Mankind Quarterly. University College London has a troubled relationship with race science.          

This isn’t to say that all race science is maliciously racist. The human genome project led to plans to establish the diversity of the human species by sequencing the DNA of “isolated” groups, this typically meant indigenous people. Those promoting this diversity work were largely liberal, well-meaning if not somewhat paternalistic but their work was riven by ethical concerns and the natural concerns of indigenous people who they sought to sample.

Touching on origins Saini observes, once Neanderthal DNA was found in white Western Europeans the species experienced something of revival in reputation. Once a by-word for well, being Neanderthal, they are now seen as rather more sophisticated. It turns out the 10,000 year old Cheddar man was surprisingly dark-skinned certainly to Britons wishing to maintain their ancestry was white. The key revelation for me in this section was the realisation that large scale migration in prehistoric times was on on-going affair, not a one off. Waves of people moved around the continents, replacing and merging with their predecessors. 

It has been observed that some races are prone to particular medical conditions (at least if they are living in certain countries, which should be a clue) therefore we seek a genetic explanation for these differences. This approach is backed by the FDAs approval of a drug combination specifically marketed to African Americans for hypertension. Essentially this was a marketing ploy. African Americans experience significant environmental challenges which are risk factors for hypertension, hypertension is a complex condition for which there is no simple genetic explanation.

Even for sickle cell anaemia, for which there is a strong genetic basis, using race as a proxy is far from ideal – the rate of the sickle cell anaemia gene varies a great deal across Africa and is also common in Saudi Arabia and India. A former colleague of mine from Northern Italy had the condition.

For a middle-aged white Western European male scientist Superior is salutatory reading. As for Inferior people men like me have repeatedly asked “What makes us so special?”, it is long past time to stop. 

Book review: Inferior by Angela Saini

inferiorMy next review is of Inferior:How Science Got Women Wrong – and the New Research That’s Rewriting the Story by Angela Saini. The theme of this book is encapsulated in the subtitle. The chapters of the book cover eight broad topics around how science has treated women. Typically they outline something of the background of the established view, and then go on to discuss some more recent revisions.

It all starts with Darwin and a letter from an American suffragette, who receives a somewhat dusty response from him regarding what he sees as the proper,evolved and, undoubtedly lower status, state of women. But Darwinism does give women an opportunity: no longer is their position ordained by God but it is now subject to environment and the laws of nature so a new space for interpretation and equal rights opens up.

The next chapter covers health and longevity, it fits to a degree with the final chapter on the menopause. Women typically live a bit longer than men though are slightly more prone to illness, particularly autoimmune diseases. For various reasons women have tended to be un-represented in medical trials, this is being addressed now. Looking back, the treatment of the menopause as a medical problem to be resolved rather than a normal part of life, is problematic. I think it may have happened to a lesser extent with men with declining libidos in later years being addressed with Viagra. The difference being that Viagra is a short term “solution” whereas HRT has tended to be a long term intervention with unknown side-effects. For many aspects of this book we can look to other animal species to see how they are similar or different to humans, with the menopause pickings are sparse. Pretty much the only example is the orca, where mothers appear to nurture their male offspring throughout there lives.

Much of the recent scientific view on human sexuality are derived from some experiments on fruit flies done in the late 1940s. They showed that males were more promiscuous than females, and the conclusion drawn from this was that males benefitted from spreading their seed more widely whilst females only needed to be fertilised once. This was reinforced by experiments, which can only be described as unethical, involving sending out students to proposition members of the opposite sex. It turns out that men were more likely than women to go sleep with a stranger. But clearly women are considering more than just reproduction in such scenarios – they face a real threat of violence.

Across the world zookeepers are puzzled as to why some of their male bonobos get beaten up by females. All manner of exceptional explanations are provided for this. But fundamentally it is because bonobos have a matriarchal society in which males lacking the protection of females (in particular their mother) are vulnerable to bands of marauding females. This is the reverse of the situation in other primate specifies such as chimpanzees and orang-utans where isolated females are targeted by males.

There is an air of desperation to the efforts to demonstrate that women are different in all manner of biological ways, rather than accept that actually it is the way that society treats women that leads to their disadvantage. Or even consider it, for that matter. Intelligence, or scientific achievement, is covered in a couple of chapters, one of which is entitled “The missing five ounces of the female brain”. Fundamentally the problem here is trying to pull apart abilities such as spatial reasoning on an axis (gender) that fundamentally isn’t that important. It turns out across a wide range of human abilities it’s only the ability to throw and the ability to jump vertically where men exceed women by more than a standard deviation. Human abilities can be variable and typically the differences between genders are much smaller than the differences within one gender.

To exclude women from scientific societies, universities and degree courses until the mid-twentieth century and blame their lag of progress in scientific circles as down to some deficiency in their abilities certainly takes some chutzpah. And the fact that we’re doing this in the early years of the 21st century is an embarrassment. Like many women of her time, my mum left her scientific work when she was pregnant with me, and in at least one case was not even given an application form for an administrative post because she was a mother.

Anthropology makes an appearance with a conference entitled “Man the Hunter” from the 1970s. Here man (the male) is seen as the key player going out on the hunt to provide for the tribe. In fact, “gathering” turns out to be more important because hunting is an unpredictable business and only rarely results in the hunter bringing home the dead antelope.

Inferior is written in a style which I found reminiscent of Ed Yong’s I Contain Multitudes. We are given the context and something of the character of the scientists who Saini interviews. This is in contrast to a lot of scientific writing, even in popular books, which tends to erase the people. I think it is particularly important for a book like this because much of the book is about the character of people. It is striking that almost without fail those arguing for a biological necessity to the the position that women find themselves in are male and those arguing for a new viewpoint based on societal contingency are women.

The change in mindset this brought to me is how obvious the importance of the gender of the researcher is in determining what is studied but also the outcome.

Book review: The Anatomy of Colour by Patrick Baty

anatomy_of_colourThe Anatomy of Colour by Patrick Baty is a history of painting as decoration for houses and buildings stretching back 350 years or so. The Painter’s Company dates all the way back to 1283, and the practice of decorative house painting back into antiquity. There is direct evidence for this preserved in Pompeii.

As I recall I’ve been following Patrick on social media for quite some time, in part because what he does relates to my former professional interests. Anatomy picks up on work I used to do in colour measurement. I did it in a different context – for a “fast moving consumer goods” company making washing liquid, shampoo and the like. It also has some relevance to work I do now on dating buildings.

At the beginning of the book the materials used to generate colours and paints are discussed. Typically these are minerals or plant materials, synthetic colourants only started to become available in the 19th century. Lead carbonate (white lead) was long used as the basis for many oil paints (of all colours), despite it’s known toxicity. It was replaced by zinc oxide in the later 19th century and now titanium dioxide is used. Confusingly from the early period “pink” used to mean a yellowish colour derived from plant material. Also mentioned are the linseed oil that formed the carrier for most paints well into the 20th century.

Following this introduction a number of broad themes are discussed in successive periods so for example in each period we learn about the favoured colours and colour schemes, colour theories and systems, and the key books relating to decorating and colour. Technology is a slowly changing background to this. In the beginning painters bought the pigments and oils and made their own paint, possible making pigments from raw materials. Pigment pastes in metal tubes came into use in the 19th century with tinned paints a 20th century innovation, as far as I can tell.

I’ve always had a problem with distemper, a suspension of chalk in a glue base which can be washed off and reapplied, mainly because I learnt about distemper, the disease of dogs first! Distemper was used as a disposable wall covering until the late 19th century when it started to be replaced by other commercial formulations until they were in turn replaced with emulsion paints sometime after the Second World War.

Something I hadn’t considered before was the importance of colour in horticulture and zoology. Darwin took a book on colour on his trip around the world. He needed it to describe the colours of animals and plants as they were collected since there was no photography and specimen preservation techniques would not necessarily preserve colour. More recently colour systems have been developed around the needs of horticultural. The red of a robins breast is probably as good a reference to a colour as could be obtained artificially until into the 20th century. Similar the yellow of a daffodil.

The colour systems discussed are a little different from those I used in scientific colour measurement, the closest approach is the Munsell “hue, saturation, value” system. In general the systems presented here are focused around defining words to describe colours to aid communication and specification, and establishing harmonious colour combinations. My work was more involved in measuring colour in a machine to see the effect of different washing liquid formulations, or similar.

In the 20th century Britain saw standardisation of colours with recommendations for the painting of commercial and public buildings. The post-war rise in DIY is well-known but housepainting was seen as something a gentleman might undertake even in the 18th and 19th century.

Early on in the book Baty shows some paint cross-sections which are discussed very briefly. I must admit I find this forensic side very interesting and I was a bit disappointed that there was not more of this – I can see how it doesn’t fit with the main audience for the book. I found the chapter / section numbering a bit confusing, there are two levels in the hierarchy and both use Roman numerals!

The book is beautifully illustrated with colour reproductions of many of the different colour systems used over the years, as well as photographs of interiors following the styles discussed. For practioners in the investigation (and recreation) of decorative schemes I can see this book being absolutely essentially, and as a more casual reader I enjoyed it too.

Book review: Other minds by Peter Godfrey-Smith

other_mindsOther Minds by Peter Godfrey-Smith is about consciousness through the lens of cephalopods, a group comprising octopuses, cuttlefish, squid and the nautiluses.

Godfrey-Smith is a philosopher, rather than a scientist. This reflects the theme of the book, Godfrey-Smith’s idea is to understand our consciousness by looking at a creature with as radically different a consciousness as he can find. So his book is more a philosophical rather than a scientific view on consciousness which to my mind is no bad thing.

I was particularly impressed by Charles the octopus, one of three which experimenters used to try to measure octopus intelligence. The other two octopuses in their study put in some effort to carry out the tests presented whilst Charles insisted on squirting water at the experimenters and being otherwise uncooperative. It does make you wonder whether measures of animal intelligence are more a combination of willingness and intelligence. Perhaps the smarter animals just can’t be doing with intelligence tests. Squirting water at lights in aquariums to put them out seems, apocryphally, to be quite common behaviour amongst octopuses.

Mrs H is undertaking a doctorate in education and it strikes me that her mode of doing research, qualitative with relatively few subjects has more in common with this type of study than the experimenters care to admit. In this type of experiment the narrative rather than the result may be more important. So measuring the intelligence of the octopuses, or the time it took them to complete a learning task, is less important than the narrative of how they performed in the experiment.

The book weaves together cephalopod biology with Godfrey-Smiths own observations of cephalopods in the wild. I was intrigued to learn that the octopus brain is wrapped around the digestive tract which has been observed to lead to problems when attempting to eat particularly spikey foods. More generally, the neural material of an octopus is not all to be found in the “brain” it is distributed around the body. Octopus legs appear to have a degree of autonomy in at least deciding how to achieve a goal, even if the “brain” decides what the end goal might be.

Cuttlefish and octopuses have amazing abilities to change their appearance both in terms of colour, but also physical texture – they can make themselves bumpy. Interestingly, as far as we can tell they are unable to see the colours they produce – the photoreceptors in their eyes are of a single type. However, there is clearly something else going on – photoreceptors are found throughout the body of the cephalopod, and they are able to match background colours exquisitely. Furthermore, with the chromatophore and other colour producing structures also present a different mechanism for producing colour sensitivity is quite feasible – for example using those chromatophores as a filter “wheel” that sits in front of the light sensitive cells.

Godrey-Smith highlights that, although the cephalopods have a huge ability to make signals, because they are not a social species their ability to use those signals is limited. This is contrast to species such as baboons who have a more limited ability to generate vocal signals but, as a social species, have a much greater ability to interpret those signals in terms of establishing their position in a hierarchy and understanding how the hierarchy has changed.

Close to the end of the book, there is a terrible denouement: the typical cephalopod lifespan is only a couple of years. These creatures, so full of potential, are but brief inhabitants of the earth. Godfrey-Smith draws parallels with the Replicants in Bladerunner here. Their brief lives are understood in terms of their dangerous environment which has led to an evolutionary strategy of large broods of young, easily lost.

The book finishes with a discussion of “Octopolis” a location in Australia where octopuses, unusually, congregate and where Godfrey-Smith did a large part of his observations discussed throughout the book. Also we find here that he is involved in scientific publication.

Overall, one is left with the feeling of cephalopods having been an opportunity missed in the consciousness stakes. They have all the mental machinery but their truncated lives and limited social behaviour means that in all likelihood the opportunity is unfulfilled. This is a consciousness-centric human view, no species is striving for consciousness or intelligence they are doing what is needed for there species to continue in the niches they find themselves.