Tag: history of science

Book review: Her Space, Her Time by Shohini Ghose

My next review is of Her Space, Her Time by Shohini Ghose. I picked this book up as a result of a review in New Scientist. It is in the spirit of Broad Band which covered the contributions of women to computing over the years – contributions which have historically been ignored. Her Space, Her Time does the same for women in physics, generally on the astrophysics and cosmology side of the subject.

The book is divided into seven chapters each covering an area of physics and a group of women who worked in those areas. The chapters cover star cataloguing (and rather more), the big bang, the space programme, radioactivity, nuclear fission, particle physics and dark matter/ beta decay. This results in a coverage which is approximately chronological.

There are some recurring themes in the book: women not allowed entry to universities for undergraduate and graduate studies, women not allowed employment in university departments and facilities (often the pretext is the lack of toilets for women), women not allowed employment at the same institution as their spouse (this seemed common in the US and its effect on the recruitment and promotion of women was noted as far back as 1966), being ignored by the Nobel Prize committee and (sometimes) their male collaborators. These women were frequently the only women in the room. Fleeing Nazi Germany (and Austria) is a theme too but that applies equally to men.

On a more positive note their work was often recognised and rewarded during their lifetimes by their scientific communities. In at least the case of Ernest Rutherford and Ernest Lawrence they had the support of senior scientists throughout their lives.

The Harvard Observatory features heavily in the first couple of chapters. Women originally became involved as “computers” analysing the stars in the photographic plates. They included Williamina Fleming, Annie Jump Cannon, Antonia Maury and Cecilia Payne-Gaposchkin with Anna Draper providing funding to the observatory via a bequest in the late 19th century. In they first instance they were analysing stars for brightness and then later for spectral features. A group of women were responsible for compiling the “Harvard” stellar classification scheme which classifies stars by temperature using the letters O, B, A, F, G, K, M (typically remembered by a sexist mnemonic). One of the women, Henrietta Swan Leavitt, discovered the relationship between brightness and period for stars which is central to measuring intergalactic (and shorter distances) and was key to understanding the scale of the galaxy and the universe. Over a very long period Harvard Observatory allowed women to be employed as astronomers, and finally become professors in astronomy. The transitions usually being the result of a change in observatory or university management.

The third chapter is a bit of an oddity, looking at women’s contributions to the space programme on the project management and rocketry side of things rather than physics as such.

The final four chapters are then an extended collection on nuclear physics starting with Marie Skłodowska-Curie, and the less well known Harriet Brooks who worked on the new subject of radioactivity in the late 19th century. Brooks worked with Rutherford, publishing in 1904 in Nature on their discovery of radon. Rutherford and Frederick Soddy would earn the Nobel Prize for the transmutation of elements whilst Brooks was left out. Rutherford and Brooks clearly had a long personal relationship, ending in 1933 on her death at the age of 56. Brooks had left physics research in 1907 when she married Frank Pitcher.

Chapter 5 largely concerns Lise Meitner who was involved in the discovery of nuclear fission with Otto Hahn with whom she worked closely for many years. Hahn received the Nobel Prize for their work on nuclear fission, whilst she did not – this has been seen as one of the more egregious omissions of the Nobel Prize Committee – Meitner was nominated for a Nobel Prize 48 times and was widely recognised as an expert in her field. Her position was made more difficult because she was Jewish, worked in Austria and with Hahn who despite protestations was a Nazi sympathiser at the very least.

Chapter 6 concerns cosmic rays and the photographic detection thereof. It starts with Bibha Chowdhuri who is from Ghose’s home city of Kolkata and was later to discover cosmic ray muons using this method. The focus of the chapter though is Marietta Blau and her student Hertha Wambacher who developed the method of photographic detection of cosmic rays. The Meitner/Hahn story is reprised here with Jewish Blau forced to leave Vienna in 1938 with her student Wambacher, a Nazi sympathiser, remaining to take credit. Elisa Frota-Pessoa, a Brazilian physicist, is mentioned somewhat incidentally towards the end of the chapter with Ghose stumbling on one of her (very prescient) publications whilst researching other work.

The book finishes with the slightly odd pairing of Wu Chien Shiung who was instrumental in the discovery of parity violation which won her colleagues Tsung-Dao Lee and Chen-Ning Yang the 1957 Nobel Prize in Physics (they specifically mentioned her in their acceptance speech) and Vera Rubin who is credited with discovering dark matter by measuring the rotation curves of galaxies and observing that they flatten at large radii – an indicator of the presence of extra, unseen matter.

Reading back through my notes, women were at the heart of modern physics through the 20th century, often those women were the only ones in the room – it is clear they were exceedingly capable. The men around them collected a dozen Nobel Prizes whilst the only woman from this book to win the Nobel Prize for Physics was Marie Skłodowska-Curie. Maria Goeppert Mayer shared the Nobel Prize for Physics in 1963 she is the only other woman to win in the 20th century. She is not included in this book, perhaps because her Nobel Prize meant she was already well known.

In the past I thought the Nobel Prize committee were simply a bit careless in failing to award women but reading this book it seems they were rather purposeful – the physics community knew these women, and the significance of what they had done, and many were nominated for a Nobel Prize, often repeatedly.

As a result of this book I am now interested in a parallel volume of Indian scientists in the West!

Book Review: Grace Hopper – Admiral of the Cyber Sea by Kathleen Broome Williams

After reading Broad Band by Claire L. Evans, about women in computing, I realised Grace Hopper was important, so I thought I’d hunt out a biography. I found Grace Hopper: Admiral of the Cyber Sea by Kathleen Broome Williams. Unusually I bought it second hand – my copy came from the Richard Stockton College of New Jersey Library Pomona, and has an austere, maroon cover.

Grace Hopper was born in New York City in 1906, she died in 1992. An undergraduate in mathematics she started a career in teaching at Vassar College but joined the Navy after the US joined the Second World War. She was posted to work on the Mark I computer at Harvard. She subsequently wrote the first software compiler, and was instrumental in the creation of the COBOL programming language. After “retiring” she then had a long career in the US Navy working on standardising their computing systems. After finally retiring from the Navy she worked for DEC for a few years until her death at the age of 86. She finished her career a rear admiral in the US Navy and has a battleship named for her (the USS Hopper) amongst numerous other rewards.

Grace Hopper gives some feel as to how it was to grow up in a relatively wealthy New York City family. The Hopper family had a holiday home in Wolfeboro, New Hampshire which, when she was small, was a day and a half travel to reach from New York City. She was brought up to be self-sufficient and trained in mathematics. Her father worked in insurance and was a double amputee – he wanted to make sure his children could fend for themselves should he die although he survived to a fair age.

Hopper studied mathematics first at Vasser College before going to Yale for a PhD in mathematics. She married Vincent Hopper in 1930, they bought a summer home of their own in Wolfeboro for $450 – part of a wedding gift. They were divorced in 1941 although it was not something she talked about, despite giving numerous interviews later in her live. Grace Hopper does not indicate the grounds for her divorce. After gaining her degree she became a lecturer in Vasser College where she was an excellent and committed teacher.

When America joined the war she was keen to serve in the US Navy which she achieved following some struggle. Fundamentally they were not keen to employ women, furthermore she was older than the Navy typically recruited, technically underweight and in a reserved occupation (as a lecturer in mathematics). Eventually she joined in 1942, and finally entered service in 1944, after training. She was proud to work in the Navy throughout her life and even whilst employed in industry she continued in the reserve service. In her Navy service she found a link with the dignitaries, including royalty, she met in later life.

Her naval placement was with the Mark I computer at Harvard, invented by Howard Aiken and built by IBM. It was the first programmable electromechanical computer in the world. Based on the slightly older relay technology rather than valves found in successors it was used principally for ballistic calculations as well as calculations of various function tables. Aiken was pretty tough to work with but Hopper clearly knew how to handle him and held him in high regard. She worked on many of the Mark I’s smaller programming jobs as well as doing more than her share of documentation and report writing.

One issue with the Mark I was that it was programmed with paper tape, the programs and data are stored as a pattern of holes 3-4mm across punched out the tape. There was a lot of paper around, as well as the disks of paper punched out from the tape. Sometimes one of the punched out disks was re-united with a hole causing an error, as Hopper pointed out “a hole getting back into a hole”!

After the war it was clear she would not be able to continue at Harvard, so she let to work on the UNIVAC at the Eckert–Mauchly Computer Corporation, later bought by the Rand Corporation and then IBM. Through Hopper’s life we see the birth and maturing of the new computing industry.

Hopper realised there was a need for standardisation in programming languages. There were an increasing number of different types of computer around, and the maintenance and programming of such computers was a bigger job than had initially been realised. Standardisation reduces this problem because a program written for one computer can be run on another. This is how COBOL was born, the Navy sponsored the Committee on Data Systems Languages (CODASYL) which created the COBOL programming language which was derived from Hopper’s FLOW-MATIC language developed for the UNIVAC.

As a scientist and software developer for 30 years I was scarcely aware of COBOL, yet it comprised approximately 80% of running code in the late nineties, according to Gartner. I imagine that figure has not dropped greatly. There is clearly a huge body of COBOL “dark matter” that software developers don’t talk about. The reason for COBOL’s obscurity seems to be the disdain of the academic computer science community, FORTRAN – born at the same time – suffers a similar disdain.

During her time working on UNIVAC Hopper maintained her Navy connection through a reserve position, and in 1966 – at the age of 60 – she retired from the reserve to work full time for the Navy at the Pentagon. She continued to work in the Navy until 1986 when she left to join DEC, at the age of 80!

In this book Grace Hopper comes out as an exceptional character. Her great skills were rooted in teaching, the drive to build a compiler was partly making her own life easier but also democratising the process of programming. She also saw the importance of raising a generation of programmers. She was very personable but seemed to have virtually no personal life. She drank moderately and smoked heavily for most of her life, and clearly had a bit of a hording problem towards the end. She was a life-long Republican and saw little value in the women’s rights movement – her own enormous success giving her the impression that there was no inequality to address.

Throughout her life, well into the period others might consider retiring, she was was engaged in a full schedule of public speaking. She gained many rewards, and a great deal of recognition in her lifetime.

I really enjoyed this book, the only place my interest lessened slightly was in the chapter describing administrative reorganisations of the US Navy. I am in awe of the achievements of Grace Hopper.

Book review: The First Astronomers by Duane Hamacher

My next review is of First Astronomers: How Indigenous Elders read the stars by Duane Hamacher. It is fair to say that Western astronomers, and other Western scientists have not treated Indigenous populations, and their knowledge, with a great deal of respect. Even now astronomers are in dispute with Indigenous populations in Hawaii over the siting of telescopes. In this book Hamacher tries to redress this imbalance and in my view does a good job of treating his interviewees, and their knowledge, with respect.

Western astronomers are not alien to interacting with people outside their professional group as part of their research most notably using historical data, like Chinese records of supernova but also amateur observers play an important in modern astronomy – particularly in the observation of comets and the like and other transient phenomena accessible using modest equipment.

The book starts with a prologue describing the background to the book and introducing a number of the Indigenous people who contributed, in the longer frontspiece they are listed as co-authors. They are largely from Australia but there are references to New Zealand, North American Native Americans, Artic peoples, South American and Africa groups.

Hamacher is an astronomer by profession and this has a bearing on this interviews with Indigenous Elders. In the past anthropologists have talked to Elders about their star knowledge and a lack of astronomical knowledge has led to mis-interpretation. I was intrigued to learn that in Western mythology the star name “Antares” is derived from the greek “anti Mars” – since Mars and Antares, in the same part of the sky and with a reddish hue are often confused!

The book is then divided thematically into chapters relating to different sorts of stars (including the moon). These are The Nearest Star (the sun), The Moon, Wandering Stars (planets), Twinkling Stars, Seasonal Stars, Variable Stars, Cataclysmic Stars (supernova and the like), Navigational Stars and Falling Stars (meteors and craters).

The big difference a Western reader will see is that Indigenous knowledge is transmitted via oral traditions, incorporating song and dance. Oral traditions are about creating a story around some star locations that provide useful information like where and when to hunt a particular animal or plant a particular crop, or where you are and how to get to where you want to be . The story linked to the stars allows it to be transmitted to the next generation without error. They are mnemonics rather than an attempt to describe a factual truth. This is obvious in Indigenous oral traditions which are still alive but I suspect it would have been the case for the oral traditions of Western Europe which give us our modern constellations.

Oral traditions can be very powerful, there is a group of craters in Australia (the Henbury Craters) which were created by a meteor impact around 4200 years ago – Aboriginal oral traditions have held this knowledge of their creation across that period of time.

Indigenous constellations can overlap and change through the seasons, they also incorporate dark space – particularly in the Milky Way. These constellations are locally determined to fit with local conditions, and land features used as landmarks.

As well as maritime navigation where the stars are used directly for finding direction, the stars are also used as a navigational aid for terrestrial travel – the routes are learnt in the dark of the winter using the stars as a map of the ground (picking stars which approximate the locations on the ground). These “songlines” are reflected in some modern day highways in Australia.

What comes through from the book is that Indigenous astronomers were very astute observers of the sky, noting phenomena including the varying twinkle of stars (including colour and intensity variations), the 8 year period of Venus returning to the same location in the sky, variable stars, sunspots and their 11 year cycle, the sounds associated with aurora and so forth. Some of these phenomena were not widely recognised by astronomers in the West until into the 19th century. In addition they had a clear understanding of many phenomena: that the moon reflected the light of the sun, that the earth was a sphere, that craters were the result of rocks falling from the sky.

Unsurprisingly, I was constantly comparing with Western astronomy. The great divergence was sometime around the end of the 16th century when Western astronomers started making detailed written records of the locations of stars and planets and using mathematics to understand them, and then moved on to the use of telescopes. I can’t help feeling the Indigenous people were held back by a lack of writing.

What comes through at the end of the book is that in the Indigenous communities have a long history of passionate and astute astronomers, dedicated to their role, and increasingly they are taking part and excelling in Western astronomy and astrophysics.

Book review: Margaret the First – A Biography of Margaret Cavendish by Douglas Grant

magaret_cavendishI have come across Margaret Cavendish in number of times in reading about the history of science, I think most recently in a biography of Christiaan Huygens. She is noted for attending a Royal Society meeting in 1666, and for being one of the earliest published female authors in England. She sounded very interesting so I picked up Margaret the First: A biography of Margaret Cavendish by Douglas Grant – one of the few biographies about her.

Margaret Cavendish was born in 1623 to the aristocratic Lucas family of Colchester and died at the relatively early age of 50 in 1673. As a child she was a keen writer, and picked up an interest in science from her brother John although as a girl her formal education was limited.

The Lucas’s were fairly heavily involved in the Civil War on the Royalist side. Margaret joined the household of the queen, Henrietta Maria, as a maid of honour in 1643. She fled to Paris with the queen’s household in 1644.  At this point William Cavendish (1st Duke of Newcastle), later to became Margaret’s husband enters the story – he was immensely wealthy and was Captain-General to the Royalist army North England. Following the Battle of Marston Moor he too fled to Europe – to Hamburg in the first instance.

William Cavendish was widower – his first wife, Elizabeth having died in 1643. Margaret and William met in Paris and were married in late 1645. Having read quite a lot of scientific biography I am starting to get a feel for what written resources are available to the biographer – in this case I suspect it was Margaret’s published writings and the financial records of her husband, which were most important. In exile William Cavendish was always struggling for money, although he seems to have had the gift of the gab since a number of times they appear on the brink of destitution which is resolved when William goes and talks to his creditors!

Whilst in Paris, Margaret dined with at least René Descartes and Thomas Hobbes – there was a fairly active salon culture in Paris at the time in which I believe women were moderately involved. In England involvement in intellectual circles appears to have been forbidden for women but perhaps it was a little more open in Paris.

The couple moved to Antwerp in 1648, where they lived in Rubens old house, again surviving on credit which William Cavendish often seemed to spend on horses! It was at this time that Margaret started to write for publication. Grant’s broad view of her output could be summarised as "needed an editor", she appeared to write straight to publication with little sign of returning to work to correct and edit for structure and coherence. 

Her early books were poetic with a theme of natural philosophy, this isn’t as outlandish as it first sounds – Erasmus Darwin was to write poetically about natural philosophy in the following century. Her atomic theories would read oddly to our eyes but were not inconsistent with prevailing theories of the time. She sat within the Classical / Cartesian school of natural philosophy with an emphasis on pure thought which in the second half of the 17th century was being displaced by a science driven by observation and experiment. In fact she wrote some criticism of the newly invented microscope. Her writing covers a wide range of forms (poetry, prose, plays, orations, letters), and a substantial fraction of it is what you might describe as romantic fiction – although The Blazing World has been described as proto-science fiction.

Margaret and her husband returned to England in 1660 following the death of Oliver Cromwell in 1658 and the Restoration of Charles II. After spending some time in London, whilst William Cavendish regained possession of his estates, the couple retired to the country from where Margaret promoted her writing – providing free copies of her books to universities and individuals. It is during this period that she attended a meeting of the Royal Society, Samuel Pepys is quite critical of her and the general impression was that men felt she shouldn’t have been there.

She died rather suddenly in 1673, a few years before her much older husband who died in 1676.

It would seem that Margaret Cavendish was a very bright young woman, who missed out almost entirely on any sort of education because she was a women. Her interest in science was promoted by her older brother John, her husband and his brother as well as extensive correspondence and dinners with leading intellectuals of the day arising from her time in Paris and Antwerp. Her work was published and promoted broadly most likely because of the power of her husband, which also served to mute criticism. She was widely seen as a rather eccentric character, in part this seems to be down to a vintage dress sense but her simply writing would probably been a factor too.

It would be nice to report that Margaret Cavendish was a pioneer, soon followed by other women into the public, scientific sphere but she wasn’t. Caroline Herschel’s work was presented to the Royal Society in 1788 – over 100 years later, exceptionally Queen Victoria became a member of the Royal Society but it wasn’t until 1945 that Kathleen Lonsdale and Marjory Stephenson became the first female fellows of the Royal Society. The first women to study for undergraduate degrees started in 1880 with Oxford and Cambridge not awarding degrees to women until 1920 and 1945 respectively.

This book was published in 1956, there are a limited number of biographies of Margaret Cavendish and although this one was entirely acceptable it is a bit dated and I can’t help feeling there will have been a lot of scholarly work done on her life in the intervening years.

Book review: The Man from the Future by Ananyo Bhattacharya

von_neumannThe Man from The Future by Ananyo Bhattacharya has been sitting on my bedside table in the "to be read" pile for a little while. I was aware of Von Neumann largely through his work on computers, and game theory.

The book is organised thematically, firstly on Von Neumann’s early years then on the various fields in which he made contributions.

Neumann János Lajos was born in Budapest in 1903, the Hungary style was to put the family name first – his father was ennobled in 1903 – hence the "von" and he Anglicised his forename to John when he moved to America in 1930. Hungary, and Budapest, in Von Neumann’s time was a hot bed of intellectuals many of whom fled Europe to America with the rise of the Nazis. For someone with a background in physics it is a bit of a Who’s Who – Eugene Wigner, Leo Szilard, Theodore von Kármán, Edward Teller, Dennis Gabor – were all his contemporaries and he seemed to know them personally.

Von Neumann’s first contributions to the academic world were in set theory, he published a paper on defining cardinal and ordinal numbers in 1921 which still stands today. This was at a time when maths was undergoing a foundational crisis, which Einstein described as "Froschmäusekreig" – a war of frogs and mice – a term I aim to use in future!

The set theory paper was written whilst he was still at school, he then moved on to study simultaneously a degree in Chemistry at Berlin, chemical engineering in Zurich at ETH and a doctorate in maths at Budapest – passing all with flying colours. He then moved on to Göttingen in about 1925 where Heisenberg was working. Von Neumann’s contribution was Mathematical Foundations of Quantum Mechanics published in 1932 – not translated into English for 20 years. His key contribution was demonstrating that Heisenberg’s matrix mechanics and Schrödinger’s wave equation theories of quantum mechanics were equivalent. To a degree I feel his contribution held back the field, backing as it did the Copenhagen interpretation of quantum mechanics (i.e. "shut up and calculate") – it wasn’t until the late 1950’s that other started probing the philosophical foundations of quantum mechanics in more depth.

It was during this period he was enticed to Princeton and the Institute for Advanced Studies. As German science declined under the Nazis due to their purges of "undesirables" from the civil service and universities, American science which had been in the doldrums rose – one at the cost of the other.

Von Neumann was clearly politically astute and had seen war coming in the early thirties, in the late thirties he was pro-actively trying to join the US army – fortunately redirected into the Manhattan Project (a project stuffed with scientists later to become Nobel Prize winners). His key contributions were in the simulations done for the implosion bomb (at a time when the idea of computer simulations was radical and new and not yet expressed). I hadn’t realised before was that airburst bomb are used because they are more destructive than the same explosives detonated at ground level, this is why the Trinity test was executed on a tower. Von Neumann was also on the committee that chose the targets for the atomic bombs dropped on Japan at the end of the war.

Von Neumann’s work on the Bomb, and his mathematical interests led him naturally into computing. Prior to the war, as part of the fundamentals of mathematics, Kurt Gödel, Alan Turing and Alonzo Church had done work essential to the foundation of computing. Turing’s work in particular demonstrated that theoretically a machine could be built which could carry out any computation but Gödel had shown that not all problems were computable. Von Neumann met with Alan Turing in 1942, it is not clear what they talked about I imagine both the Bomb and Turing’s codebreaking work at the Bletchley Park were topics of conversation.

Von Neumann had worked with computing devices on implosion calculations, an activity in which his second wife Klára Dán von Neumann was heavily involved. After the war a number of groups were working on computers, and he was convinced that the computer would be more revolutionary than the atomic bomb. His key contribution was a draft report on the EDVAC computer being built at the Moore School of Engineering in the University of Pennsylvania. The significance of this report was that it described clearly the architecture of a modern computer with input and output units, a central processor, memory and so forth – previously computers had largely been designed for very specific tasks and appear to have been logically complex. Von Neumann’s report was widely circulated much to the chagrin of his collaborators who had hoped for lucrative patents on the design of computers.

Stepping back in time a bit, Von Neumann had started working on what would come to be known as "game theory" in the 1920s, publishing his first paper in this area in 1926, followed by another in 1937 and finally a book written with Oskat Morgenstern, Theory of Games in 1943. After the Second World War mathematicians started to infiltrate economics departments and apply game theory ideas to economic problems. This has resulted in some very lucrative public auctions (designed using ideas stemming from game theory), and a fair number of Nobel Prizes in economics.

After the Second World War the US government set up the RAND Corporation which was a think tank, possibly the original think tank. They undertook a wide range of research, trying to maintain the spirit that drove the development of the atomic bomb, radar, codebreaking during the Second World War but also operations research. Von Neumann acted as a consultant and was seen very much as the father of the organisation without necessarily holding an exalted formal position. It was at this time, when they had the only nuclear weapons that the US contemplated a first strike against the Soviets. Von Neumann started quite hawkish but become more dovish over time.

The final chapter of the book is on cellular automata, stimulated by Alan Turing’s universal machine, and also how life works – in the post-war period the structure and mechanism by which DNA works was being elucidated and a number of physicists were interested in both the structure of DNA and how it transmits information. Cellular automata are perhaps best know by John Conway’s Life game. His work was prompted by Von Neumann, although Von Neumann’s book on cellular automata was not published until 10 years after his death in 1957 from bone cancer.

I must admit the book made me think of the nature of a biography, this one is quite heavily focused on scientific themes – Von Neumann is usually introduced at the beginning of the chapter with an outline of his contributions but then a wider cast of characters are brought in. The alternative is more focussed on the minutiae of the central characters life.

From a personal point of view we find Von Neumann is a bit of party animal, married twice with one daughter. His wives found him rather absorbed in his work. His occasionally harsh exterior harboured a more caring private side.

The Man from the Future is an enjoyable read if you have some interest in computing and physics, although deep knowledge of those areas is not required.