Tag Archive: history of science

Jun 27 2018

Book review: The Devil’s Doctor by Philip Ball

devils_doctorThe Devil’s Doctor by Philip Ball is a biography of Paracelsus, and a view of Renaissance magic and science. Paracelsus, who lived from 1493 to 1541 was a contemporary of figures such as Copernicus (1473-1543) and Vesalius (1514-1564), who preceded closely William Harvey, William Gilbert,Galileo and Francis Bacon.

Each chapter says something about Paracelsus and something about the time in which he lived. So we start with his early life growing up in a small town in Switzerland, his father a physician. Before moving on to a town in what is now Austria, where his father worked as a teacher in a mining school. The aside here is on the early mining industry, in this case in the Austrian Tyrol, dominated by the entertainingly named Fugger family who had gained their pre-eminent position by lending money to the nobility with silver mines as collateral.

Mining, or rather the refining of ores into metal is a “scientific” process, mixtures of seemingly unpromisingly materials are heated and, as if by magic, a shiny and valuable metal appears. In the 16th century we would not recognise the theories by which the refining process was rationalised but they highlight the importance of understanding what was to become chemistry for profit.

What’s notable about these two chapters is that one can easily see how Paracelsus started learning early. Subsequent chapters cover Paracelsus’s own education as a physician, although it is not clear whether he ever “qualified”, and a tour of Europe chased by war.

Paracelsus was a contemporary of Martin Luther and on the face of it they and something in common in their desire to overthrow the status quo. However, Luther was very focussed on solving what he saw to be the shortcomings of the administrative side of the Catholic church. Fundamentally, he wasn’t interested in science and its reform away from the scholastic creed. Luther’s view was that God was Divine and had no need to construct a Creation amenable to scientific understanding.

Paracelsus was interested in overthrowing the status quo, particularly in medicine. To that point medicine was largely about following the teachings of the ancient Greeks whose surviving medical practice was based on the four humours. Medicine was about substances and processes to correct imbalances in the humours which arose in specific diseases. Paracelsus emphasised practical study and observation rather than cleaving to these old theoretical models for medicine. He advised seeking out folk remedies specific to places, believing that diseases and their cures were localised. So his world view was something akin to our own but not exactly so, he represents a transitional state. He also counselled only undertaking minimal surgery – exceedingly wise advice at the time.

Paracelsus’s study of “chemistry” went hand in hand with his medical work. He experimented to make medicines extracting chemicals from natural sources, combining them with other materials. At the time this type of work was usually tied up with alchemy, which was interested in turning base materials into gold and elixirs for eternal life. Alchemy was part chemistry and part mysticism and secrets. Paracelsus practicised each of these elements although it seems he was less enamoured of the secretive side. His alchemical writings were more straightforward than some of his contemporaries and predecessors. The theoretical underpinnings he provided for his work seem bizarre to us but chemistry is a difficult thing. It took hundreds of years to reach the point at which we are now and Paracelsus came early in that time.

Local man (to me) Robert of Chester gets a mention as a translator of alchemical texts. Authorship seemed a fluid concept in the early period with some people attributing their work to more renowned writers – difficult to disentangle after so many years.

For the chemists amongst us, it seems that Paracelsus discovered diethyl ether whilst trying to make sulphuric acid palatable by mixing it with wine. It is mindboggling that sulphuric acid was used as a medicine!

Many of the chapters end with Paracelsus having fled a city, typically because he had offended one authority or another. He was certainly cantankerous, it is difficult to say whether he was personally unpleasant. The way he practiced medicine was, to a degree, out of tune with the times and seemed more caring than his contemporaries. I was struck by how well documented Paracelsus’s life seemed to be, perhaps this is partly a result of his peripatetic nature.

The book finishes with a couple of chapters set after Paracelsus’s death, the first of these looks at how his writings were collected and published after his death by a band of supporters, and how a weaker band of opponents also wrote about him. This conflict probably also contributed to the relatively high level of documentation for his life. The final chapter looks at his longer term impact, this is a mixed picture. Unlike Copernicus, Vesalius, Harvey and the like he did not leave discoveries which are valid today. Rather his methodology informed the changes that were to take place in the 17th century.

Mar 18 2018

Book review: The Philosophical Breakfast Club by Laura J. Snyder

breakfastThe Philosophical Breakfast Club by Laura J. Snyder is an ensemble biography of William Whewell (pronounced: who-ell), Charles Babbage, Richard Jones and John Herschel who were all born towards the end of the 18th century and died in the later half of the 19th century. Their joint project was the professionalisation of science.

The pattern for their reform was Francis Bacon’s New Atlantis published in 1626 which fictionalised a government-funded science institution whose work was for the public good, and whose philosophical basis was the systematic collection of facts, including experimentation, from which scientific theories would be gleaned by induction. As such they follow in the footsteps of the founding fathers of the Royal Society who also took Bacon as their guiding light.

By the earl years of the 19th century the Royal Society had drifted in its purpose since its founding, it was more a gentlemen’s dining club than a scientific society with your position in society a more important factor than your scientific achievements in gaining entry.

Prior to reading this book I recognised the names of Whewell, famous for coining the term “scientist”, Herschel and Babbage – the former the son of William Herschel, the astronomer, the latter the inventor of the Difference Engine. I also knew that Herschel and Babbage had been involved in attempts to reform the Royal Society.

Richard Jones was unknown to me. His contributions were in the foundations, or at least building, of the field of economics. In particular he proposed an economics based on induction, that is to say one should go out and collect facts about the economy and from that point infer rules about the operation of economies from the data. The alternative is to hypothesis some simple rules, and elaborate the consequences of those rules – this is known as deduction. In economics Ricardo and Malthus had been early proponents of this deductive method. Jones went on to become one of the commissioners under the Tithe Commutation Act 1836 which converted the payments in kind of the old tithe system into what was effectively a local tax.

Babbage, Jones and Herschel all came from moderately wealthy backgrounds for whom the path to Cambridge University was relatively smooth. Whewell, on the other hand, was the son of a carpenter which although a respectable trade would not fund attendance at the university. Whewell was educated at a grammar school in Lancaster, his home town, as a result of being spotted by the local gentry who also smoothed his path into Cambridge. This appears to be the route by which the lower middle class entered university – chance encounters.

The four men met at Cambridge University where they formed the Philosophical Breakfast Club. It was at a time when gathering together and discussing politics was seen as borderline seditious. It was not long after the French revolution and the Great Reform Act was yet to come. They corresponded throughout the rest of their lives but there is no feeling from the book that their collaboration to change the face of science was at all formal (or even subject to an overall plan).

At Cambridge Babbage and Whewell were responsible for driving the use of Leibniz’s notation for calculus, in place of Newton’s notation to which the university had adhered for some time. Leibniz’s notation is the one in use today, generally it is seen as clearer than the Newtonian version and more amenable to extension.

Babbage post-Cambridge started work on mechanical computing, managing to extract large quantities of money from the government for this work, exceptional at the time, although he did not deliver a working device. The first Difference Engine was designed to calculate mathematical tables. The later Analytical Engine was very much like modern computers in its architecture. Neither of these devices were ever fully constructed. Babbage could best be described as a mathematician which put him into some conflict with others in the Breakfast Club since mathematics is rather more deductive than inductive in its basis. Later in his life he seems to have become involved in codebreaking, quite possibly for the government, although the evidence for this is circumstantial.

Babbage also led a ferocious attack on the Royal Society in his book Reflections on the decline of science in England. The British Association for the Advancement of Science (BAAS) followed on from this although Babbage, Herschel and Whewell did not attend its first meeting. The BAAS annual meetings became rather large, and there was muttering at the time about the attendees penchant for fine dining. Unlike the Royal Society, it was open to all, even women! I was interested to read about the foundation of my own professional society, the Royal Statistical Society. It started as a section of the British Association for the Advancement of Science where it proved contentious because it was concerned in the collection and analysis of social data which surely leads to politics. Babbage and Jones set up the London Statistical Society which was to become the Royal Statistical Society.

After Cambridge Herschel spent some time in South Africa measuring the location of stars in the southern skies, following on the family business. He became president of the Royal Astronomical Society and published several books on astronomy as well as star catalogues. As well as this he was involved in the development of photography, he was an enthusiastic chemical experimenter and appears to have guided Henry Fox Talbot in fixing his early photographic images.

Whewell remained at Cambridge University for the rest of his life, where he later became the Master of Trinity College. As well as his efforts in changing the teaching of calculus he introduced the Natural Sciences Tripos (parts of which I have taught). His publications were mainly in the history and philosophy of science. He was involved in some scientific endeavours – the measurement and analysis of the tides, for example. Although he coined the term “scientist” in 1833 it wasn’t to gain much currency until much later in the century.

Snyder identifies the period 1820-70 as one where there was a great transition in science from being a gentleman’s hobby to a (sort of) mass participation activity with at least some regard for practical application, a defined career path at least for a few and some more regular government funding.

I found The Philosophical Breakfast Club very readable. It covers a period of great transition in science in the UK, and makes a nice companion to Henrietta Heald’s biography of William Armstrong.

Feb 10 2018

Book review: William Armstrong–Magician of the North by Henrietta Heald

A return to industrial history with armstrongWilliam Armstrong: Magician of the North by Henrietta Armstrong. Armstrong was a 19th century industrialist who spent his life in the north-east of England around Newcastle. His great industrial innovation was the introduction of hydraulic power to cranes and the like. His great wealth, and honours (a knighthood and then a baronetcy) derived from his work in the invention and sale of armaments principally artillery and ships. His home, Cragside near Rothbury some 30 miles north of Newcastle upon Tyne, was the first to feature electric lighting amongst many other technical innovations.

Armstrong was a contemporary of Robert Stephenson, Isambard Kingdom Brunel and Joseph Whitworth – they were all born near the beginning of the 19th century, Armstrong dying in 1900 outlasted them all with Brunel and Robert Stephenson dying in 1859.

Armstrong was born in 1910 his parents started him on a career in the law. However, he had always been fascinated by water. This led to his realisation that the power that could be extracted from a head of water in a sealed system. A water wheel extracts energy from water falling the height of the wheel, a matter of a few metres. A sealed iron pipe, such as could now be manufactured allowed you to capture the energy from a fall of tens of metres or more. In Newcastle upon Tyne the local landscape could provide this head of pressure but with a little ingenuity the head of pressure could be created with a steam engine or other mechanical means. This energy could be used to drive all manner of machinery, Armstrong initially used it to power cranes, and lock gates, to be used in docks and the many factories springing up around the country. Ultimately his hydraulic mechanisms drove London’s Tower Bridge.

In the aftermath of the Crimean War, Armstrong switched his attention to building artillery. During the Crimean War the British artillery was found wanting in terms of accuracy, destructive power and firing rate. His innovations were to move from cannonballs to shells (shaped like bullets), and from muzzle loading to breech loading. He gave up the patents for his artillery pieces to the government but made a fair business on them. His activities with ordnance led to his knighthood and baronetcy although ultimately he withdraw from the close relationship with the British government in armaments as a result of political manoeuvrings by competitors.

The manufacture of artillery led to the manufacture of warships, which incidentally also carried the artillery. The Japanese Navy were particularly important.

He was a leading light of the Literary and Philosophical Society of Newcastle upon Tyne (Lit & Phil), and contributed to founding what is now Newcastle University. Late in his life, in 1897, he published Electric movement in air and water based on his experiments and featuring cutting-edge photographs of the phenomena he described. From a scientific point of view, Armstrong is not a name you will hear in physics classrooms (at any level) today – I don’t know if the same holds for his engineering innovations. Also late in his life he bought Bamburgh Castle, and spent a fair amount of money refurbishing it.

Magician of the North is a somewhat sympathetic view of Armstrong, along the lines of Man of Iron by Julian Glover about Thomas Telford. This contrasts with Samuel Smiles biography of George Stephenson and Rolt’s of Brunel which are much more effusive about their subjects. The Armstrong’s arms trading is discussed in some detail, it seems the company sailed somewhat close to the wind legally in supplying both sides in the American Civil War. A second blemish on Armstrong’s reputation came from industrial disputes with his, and other workers on the Tyne, asking for shorting working hours. That said, he was clearly a pillar of the Newcastle and north eastern community and highly regarded by most of the people most of the time. Many buildings in Newcastle bore his name as a result of his donations both whilst he was a live and after he died.

As usual the author of this biography bemoans the limited attention their subject has received. In the case of Armstrong they put this down to his extensive involvement in the arms trade which, never the most popular, was to fall further out of favour following the Great War. I’ve never seen a quantitative analysis of what makes the right amount of attention for figures in the history of science and technology.

William Armstrong died in 1900, after his death his company went into a slow decline. The Great War led to a distaste for the arms trade, and then came the Great Depression. With Armstrong gone there was no strong, capable leader for the company. The Armstrong name lived on in various spin off companies such as Armstrong Siddeley and various amalgamations with Whitworths and Vickers.

Dec 06 2017

Book review: Leviathan and the air-pump by Steven Shapin & Simon Schaffer

leviathan-airpumpLeviathan and the air-pump by Steven Shapin & Simon Schaffer has been recommended to me by a number of people. The book discusses the dispute between Thomas Hobbes, author of Leviathan, published in 1651 and Robert Boyle, who published his first works using his scientific works involving the air-pump in 1660. It is about the foundation of the scientific experimental method.

Leviathan and the air-pump was first published in 1986, I read the 2011 second edition which has a lengthy introduction discussing reactions to the first edition of the book.

The aim of the book is to use this quite narrow case study to learn more about the rise of the “experiment” as a central activity in the way science is done. The book also explores a different way of doing the history of science, certainly when it was originally published in 1985.

I feel I am falling amongst philosophers and sociologists in reading this book, the ideas of Wittgenstein on “language-games” and “forms of life” are familiar to Mrs SomeBeans in her study for a doctorate in education.

Leviathan and the air-pump focuses on two of Boyle’s experiments in particular: his recreation of Torricelli’s experiment which sees what we now know to be a partial vacuum form above mercury in an upturned, closed cylinder and an experiment on the adhesion of smooth surfaces in a vacuum. The word “vacuum” turns out to be pivotal in the dispute with Hobbes. Hobbes held the philosophical view that there could be no such thing as a vacuum, whilst Boyle held a more mechanistic view that he did a thing which produced a space devoid of air (or much reduced in it) which he would call a “vacuum”. The book could do with a little more explanation of the modern view of these experiments. The adhesion of smooth surfaces experiment, in particular, I believe is probing a different phenomena to that which Boyle believed.

Shapin and Schaffer’s account of Boyle’s work covers both the mechanics of the experiment but also its role such experiments in generating “matters of facts”. This rests on three pillars: doing the experiments in public, a goal of replication and an experimental write up, along the lines of the modern form. The air-pump was a relatively early scientific instrument which allows some dissociation between the experimenter and the audience. Criticism of the device is not criticism of the experimenter.

Hobbes attacked Boyle on various fronts, fundamentally it did not hold with experimentation as a route to discovering the underlying causes of things. That role fell to philosophising and pure, rational, thought. Geometry was Hobbes’ model for that manner of discovery. Shapin & Schaffer discuss, briefly, other critics of Boyle. Franciscus Linus gets a somewhat patronising treatment, he is in favour of experimentation and actually does some himself but Boyle is not impressed. Henry More believes in experiments, but only to demonstrate the need for God in explaining the world.

Hobbes and the Royal Society, of which Boyle was a key figure, bore the scars of the recent English Civil War, they were desperate for peace but they sought it in different ways. The Royal Society were collegiate and sought discussion followed by agreement over matters of fact. Hobbes, on the other hand, wanted peace by authority – there was a correct answer and that should be accepted through authority. Boyle and the Royal Society wanted to demonstrate that the experimental method that they were developing allowed the generation of beneficial knowledge without rancour. I wonder whether reports of the extreme disputatiousness of Isaac Newton are a continuation of the Hobbes/Boyle argument.

It is easy to believe that this discussion between Boyle and Hobbes is long in the past but visit a physics department and see the interaction between experimental and theoretical physicists. There is a strong whiff of the Hobbesian about some theoretical physicists. Some theories pass because they are considered too beautiful to be wrong, deviations between theory and experiment are sometimes seen as a problem with the experiment (that’s not to say the experiments are perfect!). Experimentalists are seen, to a degree, as crude mechanicals.

Replication, discussed in this book, is a still-present issue. In the early years of the air-pump replication was only achieved, principally by Huygens, by those that had visited London and seen the original in action. No-one replicated the air-pump based solely on written reports. This is, to a degree, still true today. A secondary issue here is that the rewards of replication are minimal, particularly in the biological sciences where so-called p-hacking means that any experiment can produce a “significant” result that won’t be replicatable.

I enjoyed Leviathan and the air-pump, for me as a modern scientist, the detail of the dispute is fascinating. I can see the book being somewhat controversial amongst historians of science since it likely gives Hobbes more of a hearing, and more impact than previously. It also gives the political climate of the time a leading role in the creation of the experimental method, and by its narrow focus makes Boyle feel like the “inventor” of the modern experimental method. Overall, the book is pretty readable although it stretched my vocabulary in places – I found the preface to the second edition less readable than the original book.

Sep 30 2017

Book review: Pandora’s Breeches by Patricia Fara

pandoraInspired by Claire Brock’s biography of Caroline Herschel I found Pandora’s Breeches by Patricia Fara which is a broader survey of women in science during the enlightenment – from around 1500 to 1800.

Fara is interested not only in the people but also the methodology of history. Early on in the book she lays out a manifesto for a better history that doesn’t seek lonely heroes, as is often the case in history of science books. That’s to say her aim is not to simply replace the men in a normal scientific biography with women. As inspiration she cites books like Jenny Uglow’s Lunar Men which is an ensemble of biographies covering several people – I approve of this approach!

The chapter headings are pairings of woman and man, for example, “Anne Conway / Gottfried Leibniz”, at first sight this seems wrong. Surely this is a book about women in science, why tie each of them to a man? But actually it fits with the logic of the book, these women did not operate in isolation but neither did their male counterparts. Their male counterparts benefited from the more or less formal community of “scientists”, and those that had gone before them. But those male counterparts also benefitted from the practical support of their wives, daughters, sisters, other family members and friends. This book shows that practical support was not simply “she made him dinner so he didn’t have to”, it was in correspondence and the exchange of ideas, it was in the practicalities of running a laboratory at home, it was in the translation and explanation of scientific ideas and in the salon. To this group of women should also be added the invisible horde of male helpers, workmen and assistants who also go largely unmentioned.

The book starts by considering how nature has often been represented as a woman, whose intimate parts are accessed, or unveiled, or probed by scientists (usually men). In engravings from the Enlightenment period nature is often represented by a female form. This is not a framing that has disappeared, this quote by a geologist is from 1980: “Her flanks are shuddering… we don’t know of her intentions. Scientists haven’t been able to probe her deeply enough with their instruments”.

This may seem a harmless piece of flowery prose with more than a hint of sexual innuendo but it should be read in a context of a stream of scandals, at the very least in the US, where senior male scientists have acted inappropriately towards women at universities. Francis Bacon, very much the father of the modern scientific method, explicitly rejected women from his new science. A lead followed by the Royal Society who accepted men regardless of nationality and religion but could not abide women.

The book is divided thematically, the first few chapters are on aristocratic women and how they corresponded with and nurtured men who are now far more widely known. This was part of a system of scientific endeavour which was very different from that found today. There was no profession, only the sponsorship of monarchs and the wealthy. Fara discusses Elisabeth of Bohemia, and how she pushed Descartes to explain his ideas fully and Émilie du Châtelet who lived with Voltaire, conducting her own experiments and translating Newton’s Principia, although “translate” underplays greatly her work. This network was known as the Republic of Letters, and Fara highlights how women played a part in it.

The next theme is on women and science in domestics settings. Prior to the 19th century, science took place in the home which was typically managed by the women of the house. Science was an all consuming passion which inevitably brought in other members of the household. Marie Paulze Lavoisier was the wife of Antoine Lavoisier and was clearly deeply involved in his chemical experimentation, she is shown recording the results of experiments in a drawing of the time and was also responsible for highly detailed diagrams of the equipment used in their laboratory. As well as this she arranging for the publication of his work after he was executed during the French Revolution.

The women in Pandora’s Breeches were, in general, heavily engaged in the scientific endeavour. That is to say they did the things they did because they wanted to not because they had been dragged in by their men folk. This struck me particularly in the case of Elisabetha Hevelius who went out of her way to marry the much older, widowed Johannes a merchant and brewer with a substantial rooftop observatory, driven by her passion for astronomy. Priscilla Wakefield, who wrote Introduction to Botany along with 16 other textbooks, also falls into this class. She wrote, quite deliberately, for a large audience with a view to earning money from her writing.

The book finishes with Mary Shelley and Victor Frankenstein. Frankenstein is about how science fits into the wider world. Here Fara highlights that these women of 200 years and more ago did not have the same aims as feminists today, education for women was not generally promoted as a route to equality rather a way by which women could become more useful and pleasing to their families.

Throughout the book Fara highlights that these women are just those for which some written record remains, because of the prevailing culture of the time discoveries which were in truth joint efforts were written down solely to the “great man of science”.

This book is definitely worth reading, it brings to light different facets of the development of science and it is highly readable.

Older posts «