Tag: biography

Book review: The Code Breaker by Walter Isaacson

code_breakerFor my summer holiday reading I have The Code Breaker by Walter Isaacson, the author was recommended by a friend. It is the story of CRISPR gene editing, and Jennifer Doudna, one of the central characters in the development of this system and winner of the Nobel Prize for Chemistry in 2020 with Emmanuelle Charpentier for this work.

CRISPR is an acronym for "clustered regularly interspaced short palindromic repeats", a name derived from the DNA sequences that prompted its discovery. CRISPR are the basis of a type of immune system for bacteria against viruses. The CRISPR repeats form a fingerprint which matches the viral DNA and the associated system of enzymes allows a bacteria to snip out viral DNA which matches this sequence.

Whilst CRISPR is interesting in itself, it has applications in gene editing as a cure for disease in humans. CRISPR simply requires a short piece of RNA to match the target DNA in a gene to carry out its editing job. Short RNA sequences are easy to synthesise making CRISPR superior to earlier gene editing techniques. In addition there is potential to use CRISPR as a diagnostic tool for identifying infections such as covid and even as a cure for viral diseases. The Code Breaker does a good job of explaining CRISPR to a fair depth.

There is a section of the book on gene editing in humans and the moral issues this raises. Perhaps central to this is the story of He Jiankui, the Chinese scientist who led the work to carry out germ line edits to add a gene protective against HIV. Germ line gene edits mean editing the genes in an early stage embryo which means that all the cells in the child it gives rise to have the edit, including reproductive cells, hence the gene edit will be passed on to descendants. This is considered more radical than somatic cell gene editing where the changes stop with the person treated. I must admit to having some sympathy for He Jianku. Principally Western scientists had made a great show of considering the moral issues in germ line editing eventually deciding that the time was not yet right, but going against a moratorium or regulation in the area. This seems an ambiguous position to me, and the associated comments that Jiankui had done his work for publicity is a bit rich from a group of scientists who have been so competitive in the research over CRISPR. Jiankui conducted his research with the approval of his local ethics board but was subsequently disavowed by the Chinese authorities and then convicted.

Coronavirus is woven through the book because the work on CRISPR is very relevant here from a scientific point of view, and the key characters including the author are involved, as we all are! As far as I can tell Doudna et al have been involved heavily in conventional covid19 testing and have done research on CRISPR-based diagnostic tests which have great potential for the future – essentially they would allow any viral illness to be definitively tested at home (rather than a sample being sent off to do PCR test) – but are not yet used in production. Similarly there is the potential for CRISPR-based vaccines but these are not yet been deployed in anger. The Pfizer and Moderna vaccines are based on RNA but use older technology.

A chunk of the book covers the patent battles over CRISPR principally involving Doudna and her co-workers and Feng Zheng, scientist at the Broad Institute. The core of the patent dispute is how obvious the step from understanding the operation of the CRISPR system (which Doudna’s team demonstrated first) to applying it to human cells (which Zhang did first) is. I think my key learning from this part of the book is that I’m not very interested in patent battles! Tied up with the patent issue is the question of the great science Prizes which similarly give a winner takes all reward to a small group. The Nobel Prizes have a limit of three on the number of winners, so do more recently instituted prizes. Science simply isn’t done this way, and hasn’t been for a long time. There’s a group of at least a dozen scientist at the core of the CRISPR story and probably more, singling out a couple of people for a reward is invidious. It made me wonder whether the big science prizes are really about the prize giver rather than the winner.

The book is written in the more journalistic style that has arisen in scientific biography relatively recently, that’s to say there is a lot of incidental detail about where Isaacson met people and their demeanour than in older scientific biographies. I must admit I find this a bit grating, I’ve tended towards collective biographies recently rather than single person biographies which have a bit of a "great man" feel to them. However, I’m starting to make my peace with this new style – it makes science feel like a more human process, and makes for a more readable book. It’s fair to say that this is in no way a "great man" biography, although Doudna and her life and personality are a recurring theme other people get a similar treatment.

Book review: The Pope of Physics by Gino Segrè and Bettina Hoerlin

fermiThe Pope of Physics by Gino Segrè and Bettina Hoerlin is the biography of Enrico Fermi. I haven’t read any scientific biography for a while and this book on Enrico Fermi was on my list. He is perhaps best known for leading the team that constructed the first artificial nuclear reactor as part of the Manhattan Project. As a lapsed chemical physicist I also know him for Fermi surfaces, Fermi-Dirac statistics, and the Fermi method. Looking on Wikipedia there is a whole page of physics related items named for him.

Fermi was born at the beginning of the 20th century, his parents were born before Italy was unified in 1870 when illiteracy was not uncommon and people typically stayed close to home since travel quickly involved crossing borders.

Fermi was identified as something of a prodigy whom a friend of his father, Adolfo Amidei, took under his wing and smoothed his path to Pisa Scuola Normale Superior. As I sit here in in a mild lockdown I was bemused to note that the entrance exams Fermi took were delayed by the 1918 Spanish Flu pandemic. At Pisa Fermi learned largely under his own steam, at the time physics was not an important subject – the Pisa Scuola had five professors in physics and only one in physics. Fermi graduated at the top of his class.

After Pisa Fermi fell into the path of Orso Mario Corbino, a physicist, politician and talented organiser who set about helping Fermi to build a career in physics. At the time a new quantum physics was growing, led primarily by young men such as Pauli, Dirac, Heisenberg and Schrödinger who was a little older. Fermi met them on a scholarship to Göttingen in Germany. He later went to Leiden on a scholarship where he met Ehrenfest, and Einstein who was very taken with him. This was preparation for building a new physics capability in Italy.

The fruits of this preparation were a period in the mid-1930s which saw Fermi and his research group at Rome University invent a theory of nuclear decay which revealed the weak nuclear force and postulated the existence of the neutrino (this theoretical work was Fermi’s alone). The wider research group studied the transmutation of elements by slow neutron bombardment. This work was to win Fermi the 1938 Nobel Prize for Physics.

This research led on directly to the discovery of nuclear fission and the chain reaction which became highly relevant as Fermi fled Italy to the US with his wife on the eve of the Second World War. Many of Fermi’s friends, including his wife Laura, were Jewish. Fermi steered clear of politics to a large degree, he benefitted from the patronage of Mussolini but was no fascist enthusiast. The Italian uses of chemical weapons in Ethopia and, ultimately, the racial laws of the late 1930s which expelled Jews from their positions drove him from the country. He had visited the US a number of times in the early 1930s and had little trouble finding a position at Columbia University.

The route to the atomic bomb was not quick and smooth in the early years of the war, a number of physicists had noted the possibility of the fission bomb and attempted to warn politicians of its potential. This all changed when the Americans joined the war, following the Japanese attack on Pearl Harbour.

Building an atomic bomb presented a number of scientific challenges which Fermi was well-placed to address, primary amongst these was building “Critical Pile 1” the first system to undergo a self-sustaining nuclear chain reaction. It was constructed, slightly surreptitiously, in a squash court at Chicago University. It was built there as a result of a dispute with the contractor who was due to build it a little outside Chicago, at Argonne.

The “critical pile” demonstrated two things: firstly that chain reactions existed, and secondly it provided a route to producing the nuclear isotopes required to produce a bomb. It still left the question of how to purify the isotopes, and the question of how to produce a critical mass fast enough to cause a worthwhile explosion.

Fermi would go on to help in the Manhattan Project at Hanford and then Los Alamos where he held a position combining both universal scientific consultancy and administration, or at least organisation.

It is difficult to talk about Fermi’s strengths as a physicist – he had so many – he is almost unique in being both a top flight experimentalist, and theoretician. This is the great divide in physics, and people who are talented in both fields are rare. He was also clearly an excellent teacher, as well as undergraduate teaching and writing a high school physics book he supervised 7 students who would go on to earn Nobel Prizes in physics. Alongside this he was clearly personable.

Fermi died in November 1954 a little after his 53rd birthday, leaving in his wake a large number of prizes, buildings and discoveries as a memorial.

I found The Pope of Physics highly readable, the chapters are quite short but focused.

Book review: The Comet Sweeper by Claire Brock

thecometsweeperA return to women in science in this post where I review The Comet Sweeper: Caroline Herschel’s Astronomical Ambition by Claire Brock, a biography of a woman who discovered comets and nebulae and published a catalogue of astronomical objects in the later years of the 18th century. For scientists the name “Herschel” will not be unknown. Caroline Herschel’s brother William discovered Uranus, and was paid as an astronomer by King George III. Her nephew, John was also well known as a scientist. However, relatively little has been written about Caroline.

The Comet Sweeper is based substantially on the autobiographical writing of Herschel. However, she was sufficiently well-known at the time to be referenced elsewhere, and indeed later in her life was bestowed with various honours and medals for her astronomical work.

Herschel was born in Hanover in 1750, her father Isaac was a musician and very much a self-taught man – something he passed on to Caroline. Anna, her mother, gets a less than sympathetic treatment from her daughter and consequently this book. For her early years Anna treated Caroline as a servant, and stopped her education as soon as it appeared it would help her leave the Herschel household in Hanover. She was finally given a means of escape when her brother, William, invited her to Bath to work in music with him in 1771. She had no previous training in music and put herself assiduously to learning what she needed to know. William Herschel was earning up to £400 per year from music lessons and the like when he invited his sister to join him. It seems that Caroline became a significant musician in her own right, at least until her brother dragged her into astronomy.

This is something of a theme through the book, Caroline Herschel is clearly very capable and when given the opportunity can excel in whatever she turns her hand to. But the choices she has are limited. In the first instance her mother controls what she can do, then her brother – switching her from music to astronomy with little regard for her own wishes.

In astronomy Herschel started by assisting her brother in the workshop – at the time, to get the best telescope, you built them from scratch yourself. She supported him in his observations but she also carried out observations on her own. The “sweeping” of the title is the systematic scanning of the night sky with a telescope to identify static features such as stars and nebulae but more specifically to find comets. To a degree the discovery of nebulae was incidental to the main task of finding comets, nebulae were easily confused with comets so recording their locations was an essential part of finding comets. The Herschel’s work followed, but only by a few years, the publication of Charles Messier’s first catalogue of diffuse celestial objects in 1774.

As well as discovering comets and nebulae Herschel was also responsible for publishing Catalogue of Nebulae and Clusters of Stars in 1798, which built on the earlier work of Flamsteed. Ultimately this became the New General Catalogue of stars. Amateur astronomers will know this work, Messier’s catalogue provides information on the 100 or so most prominent objects whose identifying numbers are prefixed with an M- beyond this are the NGC objects – from the New General Catalogue which is the descendant of Herschel and Flamsteed’s catalogue.

Herschel was honoured in her own lifetime with a gold medal from the Royal Astronomical Society, as well as honorary membership and medal from the King of Prussia, at the age of 96. She was the first woman to be published in Philosophical Transactions the journal of the Royal Society. These awards did come until quite late in her life although she was paid £50 per annum by King George III as an assistant to her brother. He was paid rather more, £200, but notably rather less than he earned as a musician.

I found the broader insight that The Comet Sweeper gave into the lives of Georgian women was interesting. Women did not have formal positions within the scientific community of the time but they contributed as wives, sisters, daughters. At the time there was little in the way of formal, paid, scientific community – it was very much a gentleman’s club but there was a place for women in it although not necessarily of equal status.

This was to change later in the 19th century when science became institutionalised, as a result women were excluded by, for example, not being able to receive degrees or even attend lectures at university.

The Comet Sweeper is not a long book, it is readable and casts an interesting light on women in science in Georgian England and the specific contributions of Caroline Herschel.

Book review: The Man Who Ate the Zoo by Richard Girling

AteTheZooA second birthday book: The Man Who Ate the Zoo by Richard Girling is the biography of Francis (Frank) Buckland who lived 1826-80 and can best be described as a naturalist populariser. His father William Buckland was a famous naturalist, and also Dean of Westminster.

The book is chronological in its layout, starting with something of Buckland’s father William Buckland. Who coined the term coprolites to describe fossilised faeces. An early geologist he was also a theologian, rising to become the Dean of Westminster and by this connection his son Frank was exposed to the best in society from a young age.

Girling writes less of Buckland’s mother but there is a rather poignant letter to him from her as he leaves at the age of five to go to boarding school. It is loving but bemoans his impatience and lack of obedience, a letter I might write to my own son!

Buckland’s life at school and then university was unremarkable from an academic point of view but rather exotic. At school he seems to have spent a great deal of time dissecting any number of animals which came under his hand including numerous domestic cats. At the time this appears to have been unusual but no cause for concern. At university he kept something of a menagerie including a bear, named Tiglath-Pileser.

Following university Buckland trained as a surgeon, travelling to Paris in 1849 to dissect victims of cholera, who were in ample supply – the disease killed 19,000 people in that city. After training he joined the Life Guards in London as a surgeon. This does not appear to have been an onerous job since he managed to write a great deal during this time and dissect pretty much what he wanted.

He left the army in 1863, and took up residence in Albany Street, close to London Zoo and married Hannah Papps, who had borne him a child some years previously, out of wedlock – which would have been scandalous at the time. The child, Physie (Francis John), died at the age of four and a half.

Writing then became Buckland’s career. He published Curiosities of Natural History and wrote copious articles for periodicals such as The Field. The house at Albany Street played host to the famous and the “freakish”. Buckland’s interest in nature extended to the unusual in humans: giants, dwarves, hairy women and Siamese twins. Somewhat quaintly the author claims we no longer have the terrible freak shows of Victorian times. I suggest he peruse a few documentaries on TV! 

Buckland was a member of the British Acclimatisation Society whose purpose was introducing new domestic animals into the United Kingdom for the purposes of feeding the masses more cheaply, or better for the same sum. This led to a life of eating all manner of strange and exotic creatures. Perhaps happily little came of their investigations.

Buckland was appointed Inspector of Fisheries in 1867. This started in inland waters where he travelled the country inspecting salmon rivers and also worked on fish farming, eventually sending salmon eggs around the world to populate New Zealand rivers. He was keen to restore the inland waterways to make them liveable for salmon both in terms of their cleanliness and the infrastructure in them – putting salmon ladders beside man-made weirs. Subsequently he worked on marine fisheries. His final substantial work was a report on marine fisheries: Report on the sea fisheries of England and Wales.

The Victorian period was a time of change, early in the 19th century the first animal protection legislation was enacted and towards the end there was a growing realisation of the impact of man on the environment. In a way Report on sea fisheries was a swansong to the old way of thinking, it put forward the idea that the sea fisheries were effectively limitless in their capacity but called for more research into these critical food animals.

Buckland, and his father, lived in the time of Charles Darwin although his father died before the publication of On the Origin of Species  in 1859. The origins of life had been a topic of scientific interest to which both Bucklands made their contribution, on the side of the what we would now call the Creationists.

I couldn’t help thinking of Michael Faraday and David Attenborough when reading about Frank Buckland, neither can claim to be the greatest of scientists but their impact through communicating a wonder of science and nature (and a genuine deep knowledge of them) has been enormous.

The Man Who Ate the Zoo is a pleasant enough read, Buckland is an interesting character and left a legacy in fisheries research. 

Book review: The Invention of Nature by Andrea Wulf

inventionofnatureThe Invention of Nature by Andrea Wulf is subtitled The Adventures of Alexander von Humboldt – this is his biography.

Alexander von Humboldt was born in Berlin in 1769, he died in 1859. The year in which On the Origin of Species was published. He was a naturalist of a Romantic tendency, born into an aristocratic family, giving him access to the Prussian court.

He made a four year journey to South America in 1800 which he reported (in part) in his book Personal Narratives, which were highly influential – inspiring Charles Darwin amongst many others. On this South American trip he made a huge number of observations across the natural and social sciences and was sought after by the newly formed US government as the Spanish colonies started to gain independence. Humboldt was a bit of a revolutionary at heart, looking for the liberation of countries, and also of slaves. This was one of his bones of contention with his American friends.

His key scientific insight was to see nature as an interconnected web, a system, rather than a menagerie of animals created somewhat arbitrarily by God. As part of this insight he saw the impact that man made on the environment, and in some ways inspired what was to become the environmentalist movement.

For Humboldt the poetry and art of his observations were as important as the observations themselves. He was a close friend of Goethe who found him a great inspiration, as did Henry David Thoreau. This was at the time when Erasmus Darwin was publishing his “scientific poems”. This is curious to the eye of the modern working scientist, modern science is not seen as a literary exercise. Perhaps a little more effort is spent on the technical method of presentation for visualisations but in large part scientific presentations are not works of beauty.

Humboldt was to go voyaging again in 1829, conducting a whistle-stop 15,000 mile 25 week journey across Russia sponsored by the government. On this trip he built on his earlier observations in South America as well as carrying out some mineral prospecting observations for his employers.

Despite a paid position in the Prussian court in Berlin he much preferred to spend his time in Paris, only pulled back to Berlin as the climate in Paris became less liberal and his paymaster more keen to see value for money.

Personally he seemed to be a mixed bag, he was generous in his support of other scientists but in conversation seems to have been a force of nature, Darwin came away from a meeting with him rather depressed – he had not managed to get a word in edgewise!

I’m increasingly conscious of how the climate of the time influences the way we write about the past. This seems particularly the case  with The Invention of Nature. Humboldt’s work on what we would now call environmentalism and ecology are highly relevant today. He was the first to talk so explicitly about nature as a system, rather than a garden created by God. He pre-figures the study of ecology, and the more radical Gaia Hypothesis of James Lovelock. He was already alert to the damage man could do to the environment, and potentially how he could influence the weather if not the climate. There is a brief discussion of his potential homosexuality which seems to me another theme in keeping with modern times.

The Invention of Nature is sub-subtitled “The Lost Hero of Science”, this type of claim is always a little difficult. Humboldt was not lost, he was famous in his lifetime. His name is captured in the Humboldt Current, the Humboldt Penguin plus many further plants, animals and geographic features. He is not as well-known as he might be for his theories of the interconnectedness of nature, in this area he was eclipsed by Charles Darwin. In the epilogue Wulf suggests that part of his obscurity is due to anti-German sentiment in the aftermath of two World Wars. I suspect the area of the “appropriate renownedness of scientific figures of the past” is ripe for investigation.

The Invention of Nature is very readable. There are seven chapters illustrating Humboldt’s interactions with particular people (Johann Wolfgang von Goethe, Thomas Jefferson, Simon Bolivar, Charles Darwin, Henry David Thoreau, George Perkins Marsh, Ernst Haeckel and John Muir). Marsh was involved in the early environmental movement in the US, Muir in the founding of the Yosemite National Park (and other National Parks). At first I was a little offended by this: I bought a book on Humboldt, not these other chaps! However, then I remembered I actually prefer biographies which drift beyond the core character and this approach is very much in the style of Humboldt himself.